
www.bournemouth.ac.uk

Reasoning about dependencies
amongst use case events
And the benefits of enaction

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Supporting Use Cases
Our context

• Elicitation. Process models, Use Cases and
interfaces.

• Writing: Using writing rules, guidelines or templates.
• Assessing Quality.
• Comprehension: Questions and interrogation
• Validation and evolution

• Dependencies and enaction. TOOL SUPPORT.
• Moving towards design.

• Teasing out (hidden) issues.
• Use case driven processes. Construction & validation

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Two sporting use cases

1. The match reached full-time
2. The referee blew his/her

whistle
3. The ball crossed the goal-

line
4. The goal was not given

Alternatives
4. The goal was given

1. The match reached full-
time

2. The referee blew his/her
whistle

3. The ball crossed the goal-
line

4. The goal was given

Alternatives
4. The goal was not given

Validation & Context. Someone who ‘knows the the game’.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Joining Threads

• Process modelling
• Role based models & enactable

models
• Involving stakeholders.
• User-facing models. (Audience)
• Industrial users: Like them but too

much effort
• Use Cases (stuck with them)

• Support for use case case guidelines
• Importance of Dependencies

• Mapping
• Problems moving from business models

to specification – loss of ‘richness’

Process model
(operational, e.g., RAD)

Business model
(strategic)

Use case
(specification)

www.sosym.co.uk Introduction to Requirements Engineering

SoSyMDivisional Director

new project approved

start new project manager

Agree TOR for project

Agree TOR and delegate

Obtain estimate

Give plan to designer

deliver design

start new designer

write TOR for designer

prepare a plan

produce project debrief report

carry out design
quality check

produce design

design OK?no yes

Designer

Project Manager

prepare an estimate

choose a method

RAD (standard)

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

initial

start new project manager

Agree TOR for project

Agree TOR and delegate

Obtain estimate

Give plan to designer

deliver design

start new designers

write TOR for designer

prepare a plan

produce project debrief report

carry out design quality check

produce design

design OK?
no

yes

Divisional
Director

Designer

Project
Manager

prepare an estimatechoose a method

project manager started

initial

initial TOR agreed

designers started

TOR written

delegated

initial

delegated

method chosen

Agree TOR and delegate

delegated

estimate prepared

estimate sent estimate received

plan prepared

plan received

able to design

design produced

checking complete

design delivered

Designer
Estimator

initial

plan sent

ready to design

RAD
with
states

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Interaction Role1.Interaction
Me(before1 → after1)
Role2(before2 → after2)

End
before1

after1

interaction

before2

after2

Role1 Role2

Interaction Designer.deliver_design
me(accepted_design → design_sent)
Project_Manager(plan_sent → design_received)

End

Interaction in RADs (as
RolEnact code)

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Observations on RolEnact

• Process (business) model as prerequisite to
requirements or specification.

• ‘Disappointed’ by power of use case having used
process models (such as RADs).
• Enactable process models, versus static use case

description.
• Fewer options for control
• Information loss in moving towards specification.

• Formal coding / annotating of use case descriptions
too much effort (especially for industrial
collaborators).

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Enactable Use Case Tool

• Add pre-post to event (typically each line)
• Interactions involve synchronisation of multiple actors.
• Supports intra and inter-use case dependencies
• Option to enact (order of enaction) being controlled by the

pre / post states of events.
• Forces consideration of dependencies amongst events.

• Allow greater stakeholder involvement.
• Minimal (extra) effort for modeller.

• Allow traceability through from process model to use
case (and beyond…)
• Hence, don’t lose the benefits.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
Three Notations

before1

after1

interaction

before2

after2

Role1 Role2
Interaction Role1.Interaction
Me(before1 → after1)
Role2(before2 → after2)
End

Interaction Keith.gives_pen
Me (has_pen -> no_pen)
Karl (no_pen -> has_pen)

End

Actor Event pre post Actor 2 pre post
Keith gives pen has pen no pen Karl no pen has pen

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
States and Conditions

Consider two ‘independent’ events, get
apples, and get oranges’, of some
actor (or role) each which result in the
post states, has apples and has
oranges.

Third event, make juice, can occur
when either apples or oranges have
been obtained.

Traditionally, a guard on such an event
might be a precondition such as has
fruit.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
States Only Model

Within Educator, the pre-state for make juice
has to be an exact match and this requires
an extra step.
The extra step brings together two threads
(independent behaviours) into a single state,
has fruit. That is, one can still arrive at the
state has fruit, as a result of either thread.
Importantly, at any given time there is still
only one state for the role (or actor), and
hence a further simplification, for both
understanding and implementation, is
preserved.
However, since state change requires an
action, this means that there is a need for a
further (often artificial) action in order for the
actor to be in some more general state (e.g.,
has fruit).

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
Parallel: Standard RAD view

Suppose our event is now Make smoothie,
which requires that when we have fruit.
We actually have both apples and oranges.

For a use case we would be required to
choose that the gaining of apples and
oranges occurs in some arbitrary
sequence. That is:

1 Fruit Finder get apples
2 Fruit Finder get oranges

However, in reality one might gather these
fruits independently and in any, often
unknown order.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
Parallel: Standard RAD view

We employ the mechanism of splitting the role into different roles, each of which
carries one of the state variables (the having apples or oranges states).
Below is a RAD representation of role of Fruit Receipt (left) and the separate roles
Apple Receipt and Orange Receipt (right):

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Enactable Use Case Tool

• Add pre-post to event (typically each line)
• Interactions involve synchronisation of multiple actors.
• Supports intra and inter-use case dependencies
• Option to enact (order of enaction) being controlled by the

pre / post states of events.
• Forces consideration of dependencies amongst events.

• Allow greater stakeholder involvement.
• Minimal (extra) effort for modeller.

• Allow traceability through from process model to use
case (and beyond…)
• Hence, don’t lose the benefits.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Strengths and Weaknesses

• Needs to spawn a role where there are multiple state variables.
• Additional roles highlight the fact that this other (independent processing)

could be carried out by another resource, or may even be another role.
• Needs additional actions (or interactions) to join threads or to combine

states.
• Classic precondition hides states or implies behaviour. Making states

explicit forces consideration of the states of the process.
• The precondition also requires some understanding on the part of the reader

(semantic load), which may not be obvious for unfamiliar models.
• A significant consideration is that the model is intended to be accessible by

business users, or typical use case writers, who may not be familiar with
state models (and indeed, will not carry that baggage). Hence, only one
additional concept is required.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Simple (single UC)
Enaction

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

An Enaction…

Events re-ordered. New
order is in effect: 1, 3, 4,
5, 2, 6

Of course, states not
written order really
control invocation of
events.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Considering dependencies

1. Client requests connection via Schedule
2. Scheduler acknowledges connection
3. Client sends network layout
4. Scheduler creates network handler
5. Scheduler registers network handler
6. Client starts executing its tasks

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Multiple use cases

• Consider a course registration process
described with the following use case events:

• 1. Lecturer volunteers for courses to teach.
• 2. Registrar prepares course list.
• 3. Student chooses course to study.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Related Use Cases

Primary
Actor

Event Pre state Post state Secondary
Actor

Pre state Post state

Lecturer gives pen hasPen noPen Student noPen hasPen

Student gives pen hasPen noPen Lecturer noPen hasPen

Primary
Actor

Event Pre state Post state Secondary
Actor

Pre state Post state

Lecturer volunteers for
courses to
each

initial coursesAgreed Registrar waiting coursesAgreed

Registrar prepares course
list

coursesAgreed listDone Student waiting listDone

Student chooses course
to study

listDone coursesChosen

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
Parallel: Standard RAD view

Groupings are:
a) Standard roles, as
for a normal RAD
b) By use case (ignoring
roles or actors)
c) By separating each
actor that is involved in
multiple use cases into
separate unique roles,
where each role
represents that actor for
a particular use case,
and is named
accordingly.

Lecturer

hasPen

noPen

gives pen

init ial

coursesAgreed

volunteers for courses

hasPen

Student
Registrar

wait ing

listDone

waiting

prepares course
list

listDone

hasPen

chooses courses
to study

coursesChosen

noPen

hasPen &&
listDone

gives pen

noPen

coursesAgreed

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
Use Case View

Groupings are:
a) Standard roles, as for
a normal RAD
b) By use case
(ignoring roles or
actors)
c) By separating each
actor that is involved in
multiple use cases into
separate unique roles,
where each role
represents that actor for
a particular use case,
and is named
accordingly.

Lecturer Student

hasPen

noPen

gives pen

noPen

hasPen

init ial

Lecturer Registrar
Student

volunteers
 for courses

wait ing

coursesAgreed
coursesAgreed

prepares course list

listDone

listDone

coursesChosen

chooses courses to study
noPen

gives pen

hasPen

wait ing

hasPen

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
Unique Roles

Groupings are:
a) Standard roles, as for
a normal RAD
b) By use case (ignoring
roles or actors)
c) By separating each
actor that is involved in
multiple use cases into
separate unique roles,
where each role
represents that actor
for a particular use
case, and is named
accordingly.

noPen

UC1.Student

hasPen

noPen

UC2.Student

waiting

listDone

UC2.Registrar

waiting

listDone

prepares course list

coursesAgreed

hasPen

gives pen

hasPen

gives pen

noPen

UC1.Lecturer

chooses courses
to study

UC2.Lecturer

volunteers
 for courses

coursesChosen

coursesAgreed

informed hasPen &&
listDone

inform has pen

init ial

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Parallel threads

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Findings & Conclusions

• Relatively easy to represent RAD with equivalent UCD
• Maintains mapping and to aid alignment of process and use

cases.
• Though, in reality often orthogonal perspectives.

• Enaction aids discussion with stakeholders.
• Consideration of dependencies AND enaction both lead

to greater shared understanding.
• Some process issues cannot be depicted easily.

• Still can’t represent timing or NFRs
• Use notes indicating aspects that cannot be coded as states, actors

or events.
• Even this simple augmentation to use cases can seem

tricky to non-technical users

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Issues for tool support

• Does the increased capability offered by dependencies enhance
or overcomplicate descriptions?

• Will the inclusion of use case writing guidelines restrict the
flexibility offered by enaction?

• Does the template approach to structuring use cases fit more
naturally with tool support?

• Will requirements volatility make dependency mapping
unmanageable?

• Do users really require models that consider dependencies
across use cases, or does the restriction to consideration within a
use case provide a partitioning of understanding?

	Reasoning about dependencies amongst use case events
	Supporting Use Cases�Our context
	Two sporting use cases
	Joining Threads
	RAD (standard)
	RAD with states
	Observations on RolEnact
	Enactable Use Case Tool
	Three Notations
	States and Conditions
	States Only Model
	Parallel: Standard RAD view
	Parallel: Standard RAD view
	Enactable Use Case Tool
	Strengths and Weaknesses
	Simple (single UC) Enaction
	An Enaction…
	Considering dependencies
	Multiple use cases
	Related Use Cases
	Parallel: Standard RAD view
	Use Case View
	Unique Roles
	Parallel threads
	Findings & Conclusions
	Issues for tool support

