
1

Statecharts

• Development of the statechart
– Problems with state-based approaches

• Modelling with statecharts
– Simple examples
– Concurrenncy

– Other features



2

About Statecharts

• The statechart notation was developed by David Harel 
– inadequacies of state transition diagrams (STDs).

• A statechart diagram shows a state machine.
– Statechart diagrams are useful for modelling the lifetime of 

an object.

– A statechart diagram shows flow of control from state to 
state.

• Typically whole system not sum of object states



3

When to use Statecharts

• When you have a complex object
– and are not sure how it is going to function.

• When you REALLY need to know the states 
of an object
– because it is vital to the success of the 

application you are working on.

• Howevever, can use many other (non UML 
alternatives).



4

Behaviour a reactive objects

• Model the behaviour of reactive objects.
– one whose behaviour is characterised by its response 

to events dispatched from outside its context.

– A reactive object has a clear lifetime whose current 
behaviour is affected by its past.

• Statecharts are good for modelling the 
behaviour of user interface objects so that one 
can code from them.



5

More about statechart usage

• Statecharts model the event order of 
dynamic aspects on the system.

• UML statecharts (an ‘extension’ of Harel’s 
original notation) show:
1. States: simple and composite

2. Transitions, including events and actions.



6

Modelling with statecharts

• When modelling the behaviour of a reactive 
object with statecharts one is specifying:
1. The stable state in which that object may live.

2. The events that trigger a transition from state to 
state.

3. The actions that occur on each state change.

• Can also model the creation and destruction 
of the object.



7

States

• Stable state represents a condition in which an object 
may exist for some identifiable period of time.
– When an event occurs, the object may move from state to 

state (a transition).

– Events may also trigger self- and internal transitions, in 
which the source and the target of the transition are the same 
state.

– In reaction to an event or a state change, the object may 
respond by dispatching an action.



8

Simple Statechart example

On loan On the shelf
return()

borrow()

name state initial state

event trigger

Describing a Copy of a Book object



9

Composite State & Substate

idle

maintenance

validating

selecting processing

printing

maintain

cardInserted

cancel

Active

[continue]

   [not continue]

entry / readCard 
exit / ejectCard

Transition to/from composite state composite state

sequential 
substate

transition from 
substate



10

Simple Transition

A B1(C)

If event 1 occurs in state A and condition C is true 
at the time, then make the transition to state B



11

States with Depth
In a state transition diagram all the states appear at the same level in 
the diagram. In a statechart, however, the states are usually 
arranged in a hierarchy. In other words, states have depth. For 
example, state A in the picture has a lower level of detail. Although 
this is not shown, it is apparent that this exists because event 2 starts 
inside state A and event 4 terminates inside state A.

A B

2

4

We can therefore model a high-level abstraction of a 
system and not bother with lower-level details just 

yet.

3



12

Inside States
To understand what happens inside state A we can draw the 

lower level of detail for that state.

B

2

4

A

C

D

1 3

When the system is in state A, it is also in either state C or D at the 
next level in the hierarchy. There can be any number of levels and 
events can originate and terminate at different levels. E.g. event 2 
starts at state C and terminates at state B. Event 4 starts at state B and 
terminates at state D.



13

Using Depth

Depth allows a state diagram to be viewed at different levels of 
abstraction. It provides an effective way of managing the 
design of a complex system. The high-level states can be 
identified first and the lower-level details deferred. 

Systems designed as a hierarchy are generally easier to 
understand because the structure of the system is not obscured 
by irrelevant details.

Depth in statecharts is not restricted to refining states into 
lower level states. States can also be used to cluster groups of 
states in order to reduce event arrows in a statechart.



14

Depth & clustering

C

2

2

A

B

1

In the statechart, event 2 will cause a transition to state C 
when the system is in state A or B. The two states can be 
clustered into another state and the two event arrows can 
be replaced by just one that is attached to the clustering 
state.



15

More on clustering

C

2
A

B

1

Although in this simple example the number of arrows has 
been reduced by just one, if a large group of states is 
clustered by a state, then a very significant reduction in the 
number of arrows can be achieved.



16

Clustering and refinement

• Depth serves 2 purposes: clustering and 
refinement. 
– Clustering is concerned with grouping states 

together in order to reduce the number of event 
arrows - it is a bottom-up approach.

– Refinement is concerned with identifying high-
level states and, importantly, allowing the lower 
level details of those states to be delayed until a 
later time - a top-down approach.



17

Advantages of depth

• Low-level details of high-level states can be produced 
simultaneously by different people.

• The system is easy to understand 
– because it is viewed at different levels of abstraction and the 

details of one part can be understood without having to 
understand the entire system in detail.

• The design can be divided into small parts 
– that can fit onto pages of a design document.

• Number of event arrows in a can be reduced.



18

Default start states (1)

• Can be several start states in a statechart 
– every level in the hierarchy requires a default start 

somewhere.

• A start state is identified by a short arrow 
terminated by a solid circle. 
– The next slide has the default start state at the highest 

level being state A (rather than state B). 
• Within state A the default starting state is D. 

• Thus, when the system is started the initial state will be state D 
within state A.



19

Default start states (2)

B

2

4

A

C

D

1 3

When the system is started the initial state 
will be state D within state A.



20

End states (1)

• Harel (originally) did not define an end state to his 
notation though the UML does. 
– After all, most systems are designed to shut down at 

some point during their execution.

– The UML symbol for the end state is an arrow 
terminating at a solid circle surrounded by an empty 
circle as seen in the next slide.

– An action typically associated with an event that 
terminates at the end state is one that will cause the 
application to close down.



21

End states (2)

A

C

B

1 3

End state



22

The history mechanism

• Provides a way of entering a group of states based on the 
system’s history in that group.

– That is, the state entered is the most recently visited state in that 
group.

– In the next slide when event 5 occurs and state A is entered the 
history mechanism is used to determine the next state within A. 

• This is read as ‘enter the most recently visited state in the group (B, C, D, E) 
or enter state B if this is the first visit to the state’.



23

History mechanism in action

B

D E

C

F

H

56

1

23 4

5

A



24

History mechanism usage

• The history of a system overrides the default start state.

• A default start state must be specified for a group that 
uses the history mechanism for when the group is entered 
for the first time.

• The history of a system is only applied to the level in the 
hierarchy in which it appears.

• To apply the history mechanism at a lower level in the 
state hierarchy it is necessary to use a history symbol in 
the lower levels.



25

The history mechanism again

D

E G

H

F

H

16

5
23

4
HB C

A



26

The history mechanism asterisk

D

E G

H

F

H

16

5
23

4
B C

A *

An asterisk can 
be attached to 
the history 
symbol to 
indicate that the 
history of the 
system should 
be applied all 
the way down to 
the lowest level 
in the state 
hierarchy.



27

Concurrency

• A major problem with STDs is the rapid growth of 
states to describe the simplest systems. 

• The statechart approach overcomes this with the 
use of concurrency.

• As an example imagine the buttons you can use on 
the toolbar of Word - here let’s model the bold, 
italics and underline in a statechart.



28

Concurrency and state charts

• In terms of a state diagram for controlling 
these buttons, the format of the text selected 
in the application will determine the initial 
state of the system. For example, Bold off, 
Italics on, underlined off.

• The possible combination of these states are 
shown in the next slide.



29

Concurrency Example

Bold off
Italics off

Underline off

Bold on
Italics on

Underline off

Bold on
Italics off

Underline off

Bold off
Italics on

Underline off

Bold off
Italics off

Underline on

Bold off
Italics on

Underline on

Bold on
Italics on

Underline on

Bold on
Italics off

Underline on



30

Concurrency in use

• When a user clicks the B, I and U, the system will 
change states and cause the format of the 
highlighted text to change. A STD would be too 
chaotic to draw (each state has 3 possible exits 
because a user could click on any one of the 
buttons, and with 8 states, there are 24 
transitions).

• Adding more functionality would make a STD 
unmanageable. 



31

Concurrency and independence

• If we examine the B, I and U buttons it is 
clear that they work independently of each 
other. The user can click any of these 
buttons and each will not affect the other. 
So there is no real reason to control them 
with the same STD.

• The next slide shows the statechart for these 
buttons.



32

Simplicity of Concurrency

1
Bold on

2
Bold off

4
Underline off

3
Underline on

6
Italics off

5
Italics on

Bold 
clicked

Bold 
clicked

Underline 
clicked

Underline 
clicked Italics 

clicked
Italics 
clicked



33

A different example of 
Concurrency

• The left, right, centre and justify buttons do 
not operate independently of each other. 
They are in fact a group of radio buttons 
because at any one moment only one of 
them can be pushed down. If the user 
pushes another button, the previous button 
pops up. 

• This is modelled on the next slide.



34

Example modelled

Left

Centre Justify

Right

C

C

C

R

R

RL L

L

J

J J

Modelling a radio button example - 
how to make a messy statechart



35

Example and Concurrency 

• The current state is defined by the last 
button the user clicked. There are a great 
deal of arrows but these can be reduced in a 
statechart because:
– every state is connected to every other state

• So the modified statechart looks like the 
one in the next slide.



36

Concurrency (9)

7
Left

9
Justify

10
Centre

8
Right

Left clicked Right clicked

Justify clicked Centre clicked



37

Delays

A     < 10 sec B                 OK clicked

A delay mechanism can be imposed on any state within 
a statechart. A delay on a state will prevent a user being 
able to perform events in that state for a specific period 
of time after entering that state. On entry to state A 
clicking OK will have no effect for 10 seconds. After 
the statechart has been in state A for 10 seconds, if the 
user clicks OK then this will cause a transition to state 
B.



38

Time-outs

A     < 20 min time-out

Time-outs can be very useful when specifying the 
behaviour of a user interface. For instance, suppose 
a user forgets to close down an application at the 
end of the day. To guard against this, the software 
can be designed to shut itself down automatically if 
it is not used for 20 minutes.



39

Event priorities (1)

• When event arrows contain conditions, there is a 
possibility that more than one condition could evaluate 
to true. To avoid introducing non-deterministic 
behaviour, relative priorities can be assigned to events 
leaving the state (as seen in the next slide).

• In the example if fields x and y are both blank then 
Edit clicked could lead to states B, C or D. But because 
of the priorities, the transition to state B will occur. 



40

Event priorities (2)

B A

D

C
[1] Edit clicked & 
(field x is blank)

[3] Edit clicked

[2] Edit clicked & 
(field y is blank)



41

Transient states (1)
• Transient states are useful for designing databases. In certain 

circumstances, a user event in itself may not determine what the next 
state is. For instance, suppose a user event triggers the following actions:

– 1. Retrieve a set of data from a database

– 2. Put the retrieved data into a scrolling list in a particular screen.

– 3. Highlight the first row in the list.

• Suppose the data retrieved from the database contains some kind of 
status value. When a user selects a row in a scrolling list, the status value 
of that row will determine how the user will be able to interact with other 
screen items.



42

Transient states (2)

• The difficulty with modelling following behaviour lies with 
the event that first retrieves the data from the database. 
– Under normal circumstances, the current state and the user event 

would determine the next state. 

– However, in this case, the next state will be determined by the status 
of the first row in the list item after the data is retrieved. 

– In other words, at the point when the user performs the event that 
causes the 3 actions, the next state cannot be determined until the 
first 2 actions have been performed.

– To get round this we can use a transient state.



43

Transient states (3)

G

E
Transient

CBD

A

Update button 
clicked

(No data 
returned)

(status = Y)

(status = X)

While the data is 
being retrieved from 
the database, the 
statechart will wait 
in state E. When the 
database query is 
complete and the 
status of the first 
row is known, the 
transition can be 
made to the 
appropriate state.

Conditions, 
not events



44

Event-action tables (1)
• May describe all events and actions in a table. 

– This allows the developer to give more information 
than can be described in the statechart alone. 

– A system can be broken into smaller parts and precisely 
what is modelled in those parts can be shown in the 
event-action table.

– When modelling different screens it is important to 
describe the transitions from screen to screen in the 
event-action tables.



45

Event-action tables (2)

Example CD application statechart

1
CD Drawer

Closed

3
Closing CD

Drawer

2
CD Drawer

Open

  CD Loaded

No CD Loaded

Eject

(No CD in 
drawer)

Eject Eject

(CD in drawer)



46

Event-action tables (3)

Current state      Event                                              Actions                          Next state

start                   Application started                          cd_player.close_drawer;         1     

1                        Eject button clicked                         cd_player.open_drawer;         2

2                        Eject button clicked                         cd_player.close_drawer;        3

3                        (cd_player.cd_loaded = false)         none                                        1

3                        (cd_player.cd_loaded = true)          none                               CD loaded  

Note that there are no actions for the last 2 entries. This is 
because state 3 is a transient state. It moves to the next 
state dependent upon the conditions stated.


