Software Systems Modelling

Mathenge Kanyaru

Welcome to SSM

Personal introduction
Course & prerequisites
Objectives & topics
logistics & mindset
Diagnosis activity
Getting started

My Research Interests

Software Requirements Engineering

Software design and applications in:
o Product Lines

o Automated program generation

o Health informatics

Your projects

Am happy to hear your suggestions within my
areas of interest

Learning outcomes

1. Demonstrate expert knowledge of the changing nature of
software-intensive systems.

2. Select appropriate techniques systematically from the range of
methods and tools available to develop such systems.

3. Demonstrate expertise of object oriented modelling, and apply
the Unified Modelling Language (UML) to produce appropriate
software design models for software-intensive systems.

4. Apply Model Driven Architecture (MDA) and patterns in order
to create designs for business applications effectively.

5. Understand the professional issues, implications and impact of
the production of software systems models.

Topics

Introduction

Basics of UML _ Software Product Lines
o Class diagrams, state diagrams, Basi

Design Patterns Review Variability Modelling

Modelling Beyond UML Basic variability implementation
o SysML, Process Modelling techniques

O

O

MDA _ o SPL and patterns

» Foundations o MDD and Software Product
o Frameworks Lines

o Application of patterns

o Example environments (IDEs)

o Introduction to code generation

o Limitations

Contacts

Office:

o P104a

o pls note — | share with us, don’t come whilst tipsy!
o Email: jkanyaru@...

Lecture notes:

o Will be available beforehand

o Download and read, do your part!

Assessment

Course work — 30%
o Modelling, patterns, and program construction

Exam — 70%

How to gain the most

Active learning

o Read lecture notes

o Bring questions

Learn by doing

o Pen and paper exercises
o Tool exercises
Constant practice
Participation

Nutshell — do not believe you know until you have
tried it!

Diagnosis activity

Please answer the exercise sheet
o Does not count for your grade

Goal

0 Assess your Object Oriented background
o Assess your knowledge of UML

o Interests and expectations

o Tease out your internship experience

Introduction to UML

What is UML?

0 a general purpose visual modelling language that
IS used to specity, visualize, construct and
document artefacts of a system

UML provides notation to describe OO

designs

Geared for Object Oriented systems

o Parts of UML could be applicable to other
programming paradigms

History of UML,

Object Oriented Design
o Started around 1990’s

o Collection of different modelling techniques
Booch, Jacobson, Rumbaugh, Coad, etc.

By early 1990’s
o Disparity between different camps
o A standard was needed

History ot UML.. ..

Object Management Group (OMG)
0 Set up a group to establish a standard
o Mostly people from industry

First draft publis
Current version

ned in 1997
JML 2.3 — but using

diagrams from U

ML 2.1

‘ UML diagrams

= UML 2.1 supports 13 kinds of

diagrams

Diagram

Structura -

o

'-l"-

Behavior =

Composite Structune
(G

Component
Daployment

Package

Interaction

—

@ Ma::mﬁil

': :} Courss Foous

'_..4— e ey
CSequence)
Comimunication

Interaction Owandew

“. Timing

Why bother with UML?

It is THE de facto standard for OO design

Commonly used in industry and research

o Chances are you will actually need it at some
point in your career

Class diagrams

Class diagram

o Describes the types of objects in a system and the
relationships among them
o Class structure:
Name
Fields
Methods/operations

Simple class syntax

Account Class name
compartment

Account
balance: Money

accountHolder: String

At
interestRate: int tributes
compartment
“A ¢l . d .o £ addInterest ()
1S5 1.8 a description of a setOverdraftLevel () ,

set of objects that share the Operations

same attributes, operations compartment
relationships, and semantics.”

Moditiers (or access privileges in Java)

public members

o referenced from anywhere
o UML denoted with +

private members

a referenced in instances of the class that declares them
o UML denoted with -

protected members

o referenced in subclasses and classes in same package
o UML denoted with #

default members also known as package privilege

o Referenced in classes in the same package
o UML denoted with ~

Abstract classes

Shape
{abstract}

Shape
d: Dimension
draw ()
Circle Square
draw () draw ()

Relationship types

Generalization
Association
Aggregation
Composition

(GGeneralisation

Definition
o Taxonomic relationship between a more general
description and a more specific one that extends it

In OO generalization relates to inheritance

In UML denoted with an arrow line with an
empty arrowhead from subclass to
superclass

‘ Generalisation example

Figure
-width : double

/—heig ht: double
rivate members T

are not inherited

Rectangle

+computefreal) : double

Simple Exercise

Write in Java a class called Person that has
the name, last hame, and age of a person.

Define a second class called Employee that
extends Person and adds salary and job
title information.

Draw a UML class diagram to depict Person
and Employee classes.

Name, Navigability, Multipilicity

Name — Optional

o Related to problem domain

o Typically a verb

Navigability

o Establishes the direction of the relation
o Denoted with a filled arrow head

o Can be bidirectional

Multiplicity

o Establishes how many objects participate in the relation
o Typical: 0,1,0..1, 1.7, %

o Default: 1

Association

Definition
o Connections between two classes

o Implies a connection of instances
of both classes

class X uses/references/knows
class Y

Denoted in UML with a solid
line
Example: A
or more S

owns zZero

Person

1.*

multiplicity

Owns > g

name and
navigability

Pet

Aggregation

Specialized case of association

Describes a whole-part relationship between
classes

o Whole — aggregate

o Part — constituent

Aggregation characteristics

o Aggregate can exists without parts

o An object can belong to more than one aggregate
o Constituents tend to be of the same class

‘ Aggregation Example

An university is comprised of many colleges

1 . .*
University {;3 College

Composition

Specialized case of association
o Stronger form of ownership than aggregation
Objects have same life time
Describes a whole-part relationship between classes
o Whole — composite
o Part — component

Composition characteristics
o Composite cannot exists without its components

o An object can belong to only one component
o Components tend to be of different classes

‘ Composition Example

= A human body is composed of 1 head, 2
arms and 2 legs

———=»| Body f&————

Abstract classes

Abstract classes

o Their definition is incomplete

o They are template classes

o They are meant to be sub-classed

In UML.: Fgwre
s height doutie

o Class name in italics e

o Method name in italics |

o Add {Abstract} to name Rectargle

Compartment +oomputefreal) : double

Figure
{abstract}

Intertaces

Interface
o Defines a set of methods
and fields
Classes should provide
iImplementation for all i) e

7R

the methods in the L'de" Su dLi

Inte rface +getFirsy) Elemant +gafFirst) : Element

Java & UML

Mapping UML to Java

Fact

o In general there is not a one-one mapping from
UML to Java or any other OO language

Why?
o UML was designed to be language independent

So ...

o Examples of mappings for particular cases do not
constitute a generalization

‘ Example mapping attempt

Patient class Patient {
+name - String pl_.!bln:: String name; _
_dateOfBirth ©- Date private Date dateOfBirth;
#illness : String protected String illness;
=GP Number Mumber GF;
+treatment : String public String treatment;
1

‘ Example mapping attempt 2

Fatient

#changeMame(newMame : String) : boolean

+motifyGP() @ woid

#printPrescription() : boolean

+updateCondition(date : Date, condition : ConditionCode, Motes @ String) : woid

class Patient {

protecited boolean changeMame(String newMame) { ... }

public void notifyGP{) { ... }

protected boolean printPrescription() { ... }

public void updateCondition{Date date, ConditionCode condition,
String Mates) { ...}

Another mapping -generalisation example

Figure .
class Figure {
#width : double protected double width:
#he|ght - double protected double height;
}
class Reclangle extends Figure {
Rectangle public double computeAreal) { ... }
}

+computeArea() : double

Association example

Person 1.* Owns = « Pet

class Person {
LinkedList<Pet> owns;

h

class Pet { ...}

= What about cardinality?

o Provide a runtime
mechanism to enforce it!

‘ Aggregation example

University

1”*

—

public class University {

}

List colleges;

class College {

}

University univ;

College

‘ Composition example

— Body [—
1 Tz 1
Head Lung Heart

class Body {
Head head;
Lung[] lungs = new Lung([2];
Heart heart;

}

class Head {
Body body;
}

class Lung {
: Body body;

class Heart {
} Body body;

‘ Abstract classes

Fgure

width : double
height : double

+computeArea() double

abstract class Figure {
prolected double width;
protected double height;
public abstract double computefreal);

}

Rectangle

+ computeAreal) : double

class Rectangle extends Figure {
public double computefrea() {
return width * height;
}
}

‘ Interfaces

<=<intarface=>
List

+gafFirst]) : Elamant

X

Y

4
LinkedList

SortedList

+getFirst() : Bamant +gatFirsi]) : Elamant

interface List {
public Element getFirsti);
}

class LinkedList implements List {
public Element getFirst() { ... }

}

class SortedList implements List {
public Element getFirst() { ... }

}

‘ Static members

Figure

width : double
i height : double
- counter @ int

+ computelrea() : double
+ figureCounter() : int

abstract class Figure {
protected double width;
protected double height;
private static int counter,;
public abstract double computeAreal);
public static int figureCounter() { return counter++; }

