
Software Systems Modelling

Mathenge Kanyaru

Welcome to SSM

� Personal introduction

� Course & prerequisites

� Objectives & topics

� logistics & mindset

� Diagnosis activity

� Getting started

My Research Interests

� Software Requirements Engineering

� Software design and applications in:

� Product Lines

� Automated program generation

� Health informatics

Your projects

� Am happy to hear your suggestions within my

areas of interest

Learning outcomes

� 1. Demonstrate expert knowledge of the changing nature of
software-intensive systems.

� 2. Select appropriate techniques systematically from the range of
methods and tools available to develop such systems.

� 3. Demonstrate expertise of object oriented modelling, and apply
the Unified Modelling Language (UML) to produce appropriate
software design models for software-intensive systems.

� 4. Apply Model Driven Architecture (MDA) and patterns in order
to create designs for business applications effectively.

� 5. Understand the professional issues, implications and impact of
the production of software systems models.

Topics

� Introduction
� Basics of UML

� Class diagrams, state diagrams,
use cases

� Design Patterns Review
� Modelling Beyond UML

� SysML, Process Modelling
� MDA

� Foundations
� Frameworks
� Application of patterns
� Example environments (IDEs)
� Introduction to code generation
� Limitations

� Software Product Lines

� Basic concepts

� Variability Modelling

� Basic variability implementation
techniques

� SPL and patterns

� MDD and Software Product
Lines

�

Contacts

� Office:

� P104a

� pls note – I share with us, don’t come whilst tipsy!

� Email: jkanyaru@...

� Lecture notes:

� Will be available beforehand

� Download and read, do your part!

Assessment

� Course work – 30%

� Modelling, patterns, and program construction

� Exam – 70%

How to gain the most

� Active learning

� Read lecture notes

� Bring questions

� Learn by doing

� Pen and paper exercises

� Tool exercises

� Constant practice

� Participation

� Nutshell – do not believe you know until you have
tried it!

Diagnosis activity

� Please answer the exercise sheet

� Does not count for your grade

� Goal

� Assess your Object Oriented background

� Assess your knowledge of UML

� Interests and expectations

� Tease out your internship experience

<=25 mins<=25 mins

Introduction to UML

� What is UML?

� a general purpose visual modelling language that
is used to specify, visualize, construct and

document artefacts of a system

� UML provides notation to describe OO

designs

� Geared for Object Oriented systems

� Parts of UML could be applicable to other

programming paradigms

History of UML

� Object Oriented Design

� Started around 1990’s

� Collection of different modelling techniques

� Booch, Jacobson, Rumbaugh, Coad, etc.

� By early 1990’s

� Disparity between different camps

� A standard was needed

History of UML…

� Object Management Group (OMG)

� Set up a group to establish a standard

� Mostly people from industry

� First draft published in 1997

� Current version UML 2.3 – but using

diagrams from UML 2.1

UML diagrams

� UML 2.1 supports 13 kinds of
diagrams

Why bother with UML?

� It is THE de facto standard for OO design

� Commonly used in industry and research

� Chances are you will actually need it at some

point in your career

Class diagrams

� Class diagram

� Describes the types of objects in a system and the

relationships among them

� Class structure:

� Name

� Fields

� Methods/operations

Account

balance: Money

accountHolder: String

interestRate: int

addInterest()

setOverdraftLevel()

Class name

compartment

Attributes

compartment

Operations

compartment

Account

“A class is a description of a

set of objects that share the

same attributes, operations

relationships, and semantics.”

Simple class syntax

Modifiers (or access privileges in Java)

� public members
� referenced from anywhere

� UML denoted with +

� private members
� referenced in instances of the class that declares them

� UML denoted with -

� protected members
� referenced in subclasses and classes in same package
� UML denoted with #

� default members also known as package privilege
� Referenced in classes in the same package
� UML denoted with ~

Circle Square

Shape

{abstract}

Shape

d: Dimension

draw()

draw() draw()

Abstract classes

Relationship types

� Generalization

� Association

� Aggregation

� Composition

Generalisation

� Definition

� Taxonomic relationship between a more general
description and a more specific one that extends it

� In OO generalization relates to inheritance

� In UML denoted with an arrow line with an

empty arrowhead from subclass to

superclass

Generalisation example

Simple Exercise

� Write in Java a class called Person that has

the name, last name, and age of a person.

� Define a second class called Employee that

extends Person and adds salary and job

title information.

� Draw a UML class diagram to depict Person

and Employee classes.

Name, Navigability, Multipilicity

� Name – Optional
� Related to problem domain

� Typically a verb

� Navigability
� Establishes the direction of the relation

� Denoted with a filled arrow head

� Can be bidirectional

� Multiplicity
� Establishes how many objects participate in the relation

� Typical: 0, 1, 0..1, 1..*, *

� Default: 1

Association

� Definition

� Connections between two classes

� implies a connection of instances

of both classes

� class X uses/references/knows
class Y

� Denoted in UML with a solid
line

� Example: A Person owns zero
or more Pets

Aggregation

� Specialized case of association

� Describes a whole-part relationship between

classes

� Whole – aggregate

� Part – constituent

� Aggregation characteristics

� Aggregate can exists without parts

� An object can belong to more than one aggregate

� Constituents tend to be of the same class

Aggregation Example

An university is comprised of many colleges

Composition

� Specialized case of association

� Stronger form of ownership than aggregation

� Objects have same life time

� Describes a whole-part relationship between classes

� Whole – composite

� Part – component

� Composition characteristics

� Composite cannot exists without its components

� An object can belong to only one component

� Components tend to be of different classes

Composition Example

� A human body is composed of 1 head, 2
arms and 2 legs

Abstract classes

� Abstract classes

� Their definition is incomplete

� They are template classes

� They are meant to be sub-classed

� In UML:

� Class name in italics

� Method name in italics

� Add {Abstract} to name

compartment

Interfaces

� Interface

� Defines a set of methods

and fields

� Classes should provide

implementation for all
the methods in the

interface

Java & UML

Mapping UML to Java

� Fact

� In general there is not a one-one mapping from
UML to Java or any other OO language

� Why?

� UML was designed to be language independent

� So …

� Examples of mappings for particular cases do not
constitute a generalization

Example mapping attempt

Example mapping attempt 2

Another mapping -generalisation example

Association example

� What about cardinality?

� Provide a runtime

mechanism to enforce it!

Aggregation example

Composition example

Abstract classes

Interfaces

Static members

