
www.bournemouth.ac.uk

Software Systems Modelling:
Classes and Objects: The
abstract perspective

Dr Keith Phalp

Computing Framework Software Systems Modelling

UML - Pure Class

A class diagram shows a set of classes, interfaces, collaborations
and their relationships.
Class diagrams are the most common diagram type you’ll use to
model OO systems.
One purpose of the class diagram is to define a foundation for
other diagrams where other aspects of the system are shown.
Class diagrams only model the static design view of the system.

Computing Framework Software Systems Modelling

Who stole the
Analysis Model (1)?

UML diagrams concerned with design:
Class diagram, Object diagram.
UML diagrams concerned with
implementation:
Component diagram.
UML diagrams concerned with
architectural deployment:
Deployment diagram.

Computing Framework Software Systems Modelling

Who stole the
Analysis Model (2)?

Diagrams concerned with dynamics of the
system:
Sequence diagram, Collaboration diagram,
Activity diagram, Statechart diagram.
And Use Case Diagrams? Well, they’re concerned
with the ‘Use Case View’ of the system - whatever
that means.
We can say: the UML does not support an
Analysis model of the system.

Computing Framework Software Systems Modelling

So how do we
analyse with the
UML?

We can develop a business class model
We can do design and pretend it’s analysis
Or…
We ignore the fact that UML does not explicitly
support analysis and do analysis anyway.
(Without adding any new notation - it’s all a
question of abstraction, description and context.)

Computing Framework Software Systems Modelling

Fowler’s Perspectives
(1)

Martin Fowler identifies 3 perspectives
of use for UML class diagrams
Conceptual

• similar to C & Y OOA

Specification
• concerned with interfaces of classes

Implementation
• the implementation code is apparent

Computing Framework Software Systems Modelling

Perspectives (2)

Conceptual
Diagram represents the concepts in the
domain under study. No regard to software or
implementation should be made. The concepts
relate to the classes that implement them but
there is no concern for code. Often called a
“Business Model”, this equates to a typical OO
analysis diagram of the problem domain.

Computing Framework Software Systems Modelling

Perspectives (3)

Specification
a fundamental principle of OO that is often ignored is
that of interface. The difference between
implementation and interface is usually blurred.
To have a class diagram that deals with interface only
is of importance when we discuss class responsibility.
(CRC cards are useful for this too.)

Implementation
We show all the classes with all their implementation.
Often the specification diagram is better but you’ll see
this more.

Computing Framework Software Systems Modelling

Classes and Objects

• A class is a set of objects that share a
common structure and behaviour.
– Egbert the Aardvark belongs to the class

'Aardvark'.

• A class is a blueprint of state and
behaviour from which objects are
instantiated
– E.g., Keith is an object of class ‘Unknown

Alien Species’.

Computing Framework Software Systems Modelling

Object Oriented Analysis

• OOA is all about viewing a solution in
terms of Classes & Objects.

• It is argued that ‘...by thinking about
systems in an object-oriented way we
can...’
– Begin to understand the problem domain.
– Give the system an intuitive structure.

Computing Framework Software Systems Modelling

Finding Classes (and objects)

• Object - An abstraction of something in a problem
domain, reflecting the capabilities of a system to
keep information about or interact with it; an
encapsulation of Attribute values and their
exclusive Services.

• Class - A description of one or more Objects with a
uniform set of Attributes and Services, including a
description of how to create new objects in the
Class.

• Class-&-Object - A term meaning “a Class and the
Objects in that Class.”

Computing Framework Software Systems Modelling

Finding Classes (and
objects) 2

• Roles Played e.g., Bank Customer.
• Things or Events Remembered e.g.,

Sensor Log.
• Devices e.g., Sensor , Robot Arm.
• Operational Procedures e.g., Calculate

Interest.
• Sites e.g., Launch Pad, Tube Station.
• Other Systems.
• Structure - inheritance and ‘part-of’

hierarchies.

Computing Framework Software Systems Modelling

Roles

• The OOA view is: What role or roles do
human beings play in the system?. Two
types of role.
– A user who interacts with the system. E.g.,

Pilot.
– A Person who does not interact directly with

the system but about whom information is
kept. E.g., Customer Financial Record.

• With our strategic (business) modelling we
already have identified roles (candidate
objects).

Computing Framework Software Systems Modelling

Anthropomorphism

I'm a object
in a class!

I know things
and I do
things!

Computing Framework Software Systems Modelling

How to name Classes

• Use a singular noun or adjective & noun
• Describe a single Object in the Class
• Adhere to the standard vocabulary for

the problem domain.

Computing Framework Software Systems Modelling

Where to look

• Observe first-hand
• Listen actively
• Check previous OOA results (REUSE!)
• Check other systems
• Read
• Prototype.

Computing Framework Software Systems Modelling

Adding Class to the UML

Record

A simple UML class. Note that attributes and operations
are left empty here - they can be filled as you want,
dependent on the perspective you wish to model.

Record

Computing Framework Software Systems Modelling

Simple class syntax

Account

balance: Money
accountHolder: String
interestRate: int

addInterest()
setOverdraftLevel()

Class name
compartment

Attributes
compartment

Operations
compartment

Account

“A class is a description of
a set of objects that share

the same attributes,
operations relationships,

and semantics.”

Computing Framework Software Systems Modelling

Connecting classes
There are 4 types of connections in UML

• Dependencies which are using
relationships.

• Generalizations which are inheritance
relationships.

• Associations which are structural
relationships.

• Aggregation, which shows whole-part
relationships.

Computing Framework Software Systems Modelling

Dependencies

A dependency shows that one class uses another. A
change in one will affect the other.

Money

Account

balance: Money
accountHolder: String
interestRate: int

addInterest()
setOverdraftLevel()
deposit(cash: Money)

Computing Framework Software Systems Modelling

• Defines an ‘Is a’ relationship between
classes.

• A class may inherit services and
attributes from other classes
– A Bird squawks.
– A Penguin squawks and swims.
– A Penguin is a bird.

Inheritance

Computing Framework Software Systems Modelling

Generalization

“Generalization

implies

substitutability”

Parent

Child

Computing Framework Software Systems Modelling

Class Structures -
Generalisation-Specialisation

CustomerRecord is a
specialisation of
Record.

The triangle arrow
head indicates that
Record is the parent
and CustomerRecord
the child.

CustomerRecord

Record

Computing Framework Software Systems Modelling

Inheritance 2

Bird Class has a
beak length and
squawks.

Penguin Class has a fin
colour and swims.

Penguin inherits from bird
so it also has a beak
length and squawks

A Penguin 'is a' Bird

Superclass

Subclass

BEAK LENGTH

SQUAWK

BIRD

FIN COLOUR

SWIM

PENGUIN

Computing Framework Software Systems Modelling

Inheritance 3

• Inheritance is a Generalisation-
Specialisation relationship
– A ‘Penguin’ Class is a specialisation of ‘Bird’.

• Inheritance is a hierarchy where new
classes may be built as specialisations of
those already in existence.

• Inheritance is said to allow:
– Greater understanding of the problem

domain.
– Reuse: of existing classes

Computing Framework Software Systems Modelling

Multiple Inheritance

• A subclass may be derived from more
than one superclass.

AMMUNITION

FIRE!

GUN

SPEED

DRIVE

VEHICLE

TANK

ARMOUR THICKNESS

SWIVEL TURRET

Superclasses

Subclass

Computing Framework Software Systems Modelling

Class Hierarchies

• Hierarchies of Classes inheriting from
each other, sometimes called
‘Inheritance Trees’.Animal

MammalSmall
Squidgy
Things

Insect

Aardvark Primates Dolphin

Baboon Human King Kong

Amoeba ‘The Blob’

Computing Framework Software Systems Modelling

Abstract classes

Circle Square

{abstract}

Shape
Shape

d: Dimension

draw()

draw() draw()

Computing Framework Software Systems Modelling

ConcreteStrategyCConcreteStrategyBConcreteStrategyA

StrategyContext

ContextInterface() AlgorithmInterface()

AlgorithmInterface() AlgorithmInterface() AlgorithmInterface()

Data

A simple Class Diagram showing
an abstract class

Computing Framework Software Systems Modelling

Associations

Associations are implicitly bidirectional
but the direction arrow ‘ ’ makes
association unidirectional - it shows
navigability.

Company Person
1

*

employee

employer

works for

multiplicity

role

name

Computing Framework Software Systems Modelling

Whole-Part

• A class & objects may be composed of
other classes & objects.
– This is called a ‘whole-part’ relationship.
– Allows compositional hierarchies.
– E.g., a car is composed of an engine,

seats, boot, wheels and so on.

Computing Framework Software Systems Modelling

Composition

• Defines a ‘is part of’ relationship.
• Classes (and any objects they instantiate)

may be nested inside other classes.
• The human body has two lung objects

inside it
– So the lung class & objects are ‘part-of’ the

human body class.
– As a consequence a human object will

always have lung objects inside it (as the
human class blueprint does).

Computing Framework Software Systems Modelling

Class Structures -
Whole-Part

InsuranceRecord

CarDetail

1…*

1

The diamond shows the
whole-part “direction” -
CarDetail is part of
InsuranceRecord. The
cardinality shown
indicates that for every
InsuranceRecord there
can be 1-to-many
CarDetail classes.

Computing Framework Software Systems Modelling

Notation & Guidelines

• Draw whole - part
structures from top
to bottom.

• Number above
each part is a
range.

• Number under
whole states how
many wholes there
are at any one
time.

 WHOLE

PART ONE PART TWO

0-1 1

1 1…*

Computing Framework Software Systems Modelling

Whole - Part Example
• A plane composed of 0 to 4

engines.
– (0 being a glider!)

• Plane composed of 1 to
many seats.

• Engine & seat may be ‘part
of’ a single plane or
reasoned about on their
own.

Engines and Seats

are ‘parts of’

planes. PLANE

ENGINE SEAT

0-1 0-1

0-4 1…*

Computing Framework Software Systems Modelling

Kinds of Whole-Part Structure

• Assembly of Parts
– E.g., An aircraft is composed of engines.

• Container & Contents
– E.g., A pilot sits inside an aircraft.

• Collection of Members
– E.g., A squadron is composed of aircraft.

Computing Framework Software Systems Modelling

Another Whole-Part View

0..1

0..4

 Aircraft

 Engine

0..1

1

 Aircraft

 Pilot

Container-contents Collection-membersAssembly-parts

(kick one) (look inside) (observe)

0..*

1

 Squadron

 Aircraft

Computing Framework Software Systems Modelling

Whole-Part Advice

• Consider each Object as a whole. For
potential parts, ask:
– Is it in the problem domain?
– Is it within the system’s responsibilities?
– Does it capture just a status value?

• If so, then just include a corresponding Attribute
within the whole.

– Does it provide a useful abstraction?

• Also, consider each Object as a part.

Computing Framework Software Systems Modelling

Overview of Behaviour

• Behaviour is about the dynamic properties
of a model or system.
– Contrast with a static model.

• Behaviour in objects is brought about
through ‘services’.

• Examine categories of service.
• Describe strategies for the identification

and description of services.

Computing Framework Software Systems Modelling

Services and Behaviour

• A Service is a specific behaviour that an
Object is responsible for exhibiting.
– Dobbin the Mule carries holidaymakers at

Butlins.
– Karl’s car drives forward (usually).

• Operations and methods are synonyms.
• ‘What I do’.

Computing Framework Software Systems Modelling

Services, States and
Behaviour

• An object is a dynamic entity - the
values of its attributes collectively define
a ‘state’.

• Changes of state are the result of the
invocation of services.
– (For roles it was the invocation of events).

• State changes can be captured through
the use of STDs.
– Other mechanisms?

Computing Framework Software Systems Modelling

Service Notation

Services are shown in
the bottom section of
the class symbol.
Services may be
considered to be
either simple or
complex

 SomeClass

SomeService

OtherService

Computing Framework Software Systems Modelling

Algorithmically Simple
Services

C Create

R Read

U Update

D Delete

All objects are given
these CRUD services for
free.

We only add them to
the model in special
cases.

Computing Framework Software Systems Modelling

Simple Service Categories

• Create: creates and initialises a new
object.

• Read: gets (access) the value of an
internal attribute.

• Update: sets the value of an attribute.
• Delete - disconnects (releases) an

external object.

and
• Connect - calls a service in another

object.

Computing Framework Software Systems Modelling

Algorithmically Complex
Services

• Calculate: calculates a result from the
attribute values of an object.

• Monitor: monitors an external system
or device.
– Deals with external system inputs and

outputs, or with device data acquisition and
control.

– May need some companion Services, such
as Initialise or Terminate.

Computing Framework Software Systems Modelling

Service Identification and
Definition

Two broad strategies
• Introspection - to see how an object

changes state over time; Object State
Diagrams.
– Or similar.

• Interconnection - to see how an object
relates with other objects; Messages
and Scenarios.

Computing Framework Software Systems Modelling

Attributes

• Attribute: some data (state information)
for which each Object in a Class has its
own value.
– A property, quality or characteristic.
– ‘What I know’.

• ‘Any property, quality, or characteristic
that can be ascribed to a person or
thing’. [Webster, 1977].
– E.g., Dobbin has a resting heart rate of 70

bpm.

Computing Framework Software Systems Modelling

Attribute Notation

Attributes are
shown in the
centre section of
the class symbol.

 Patient
patient_ID
name
dateOfBirth

Computing Framework Software Systems Modelling

Identifying Attributes

• Anthropomorphic Questions:
– How am I described in general?
– How am I described in the problem

domain?
– How am I described in the context of the

system’s responsibilities?

• and then...
– What do I need to know?
– What state do I need to remember over

time?
– What states can I be in?

Computing Framework Software Systems Modelling

Sensible Attributes: Atomicity

• Make each attribute an ‘atomic concept’ -
i.e., a single or tightly coupled set of
values.

Good Values:
– Name (‘Zargonn, Lord of the 9 Moons of

Jubberwak’)
– Address (‘9 Acacia Avenue, Surbiton,

London’)

• Bad Values
– The things a horse does in the evening.
– Aesthetics.

Computing Framework Software Systems Modelling

Attribute Positioning

• Place attributes within the Class (&
object) it best describes.
– E.g., Current_Methane_Level would be

best placed inside Methane_Sensor.

• In a Gen-Spec (Inheritance) Structure...
– Attributes that are generally applicable to a

number of subclasses should be in a
superclass (rather than repeated).

– Specialised attributes should be in a
subclass.

Computing Framework Software Systems Modelling

Attribute Verification

• Check for values
which may not
always be
applicable.

• Single attribute
classes?
– Ask: is this a good

abstraction?

AIRCRAFT

ENGINE_TYPE

FLY

When is the attribute not
applicable?

BANANA

FREIGHT_COMPANY

CONSUME

Is this attribute appropriately placed?

