
www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Use Cases: Overview

• What is a use case?
• Why use cases

• requirements and specification?
• Properties of use cases.

• Actors
• Use case Diagrams.
• Some brief examples
• Next time the use case description

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

• A use case is a modelling technique used to describe what a
new system should do or what an existing system already
does from the user’s point of view. [Note: Michael Jackson’s
specification interface (1995)]

•An (important) aim of use case modelling is to describe the functional
requirements of the system.
•The functionality of the system is represented by a complete set of use
cases.
•Each use case specifies a “complete functionality”: one general usage
of the system.

• We might argue to what extent they specify

What is a Use Case?

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

A definition

• A use case specifies the behaviour of a
system (or a part of the system):

• it is a description of a set of sequences of
actions, including variants, that a system
performs to yield an observable result of
value to an actor.

• Booch et.al (1999)

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
What does it do?

• A use case describes the sequence of events of an
actor (an external agent) using a system to complete a
process.

• They are stories (scenarios) or cases of using a
system.

• The UML notation is :-

Buy Items

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Why Use Case modelling?

• A use case provides an efficient
communication mechanism between end-
users and developers

• Represents what the system offers
• It defines a testable system requirement

from an outside-in perspective.
• Note: This is the party line….

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Use cases for requirements

• Provide structure:
• Identify the actors
• For each actor

• find what they need from the system (which use
cases have value for them)

• Find any interactions they expect to have with the
system (which use cases they take part in for others
benefit)

• Provide priorities:
• How much an actor needs a given use case

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
Requirements: and use cases

• According to the UML User Guide

• Establish system context by identifying the actors that surround it.
• Consider the behaviour that each (actor) expects or requires
• Name these common behaviours as use cases.
• Factor common behaviour into new use cases that are used by others;
• factor variant behaviour into new use cases that extend more main line flows.

• Model these use cases, actors, and their relationships in a use case
diagram.

• Adorn use cases with notes that assert non-functional requirements;
• you may have to attach some of these to the whole system.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Use cases - planning

• Analysis of the system and the development of a
use case model means that you should have the
following aids to planning
• have a good idea of what each use case means
• an understanding of who wants each and how much
• knowledge of which use cases carry most risk
• a plan for how long it should take to implement each

use case

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Use cases - validation

• Each use case describes a requirement on
the system, so a correct design will mean
that each use case is realised.
• Therefore to validate a design - check that each

use case can be carried out.
• Use cases provide enough information to

derive systems tests and validation tests.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Use cases - scope

• In any system, some things are inside the system and
some are external. Those things inside the system
are responsible for carrying out the behaviour that
those outside the system expect the system to
provide.

• Those things external to, but interacting with the
system, constitute the context. The context defines
the environment in which that system lives.

• In theory (for the purists) we do not concern
ourselves with internal system behaviours.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Use Case Diagram

system boundary

actor

bi-directional communication association use case

Access
Records

Academic User
the system

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Another Use Case
Diagram

• Cross references Actors
to Use Cases

• An actor is a stick
person

• A Use Case is an ellipse
• Lines represent

interactions between the
actors and Use Cases

Borrow Book

Return Book

Extend Loan
Period

Book Borrowe
Reserve Boo

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

The UML User Guide defines actor as:
“A coherent set of roles that users of use cases play when
interacting with use cases.”
That means we can show inheritance and treat actor as a gen-spec
structure. Hence, an actor when instantiating a use case is in fact
playing a role.

Tamer

Octopus
Tamer

Giant Walrus
Tamer

Actors In UML

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

What is an actor?

• Anything with which the system
interacts
• a human

• another system

• time

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Defining an Actor

• Actors
• exchange information with the system
• directly interact with the system without the

intervention of another actor [again a bit purist]
• are external to the system
• perform non-deterministic actions (though

dependencies can be considered - see later).
• they are responsible for carrying out the use cases they

are associated with
• Actors should not be described or analysed in

detail (will also discuss later).

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Users, roles, actors and
resources

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
Identifying an actor -1

• An actor may:
• Only input information to the system
• Only receive information from the system
• Input and receive information to and from the system

• Potential human users are relatively easy to identify and
will be a first cut solution.

• Subsequent iterations will identify the roles
• e.g. In the library you identify a student and a lecturer as potential

actors. From the library systems point of view they both do the
same thing i.e. borrow a book. The role is that of BookBorrower
and that is the actor.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
Identifying an actor - 2

• A non-human actor can be more difficult to identify
• A keyboard is not an Actor because it is operated by a

human.
• Input from a barcode reader?
• Input from another system in the same company? (the Internet?)
• The output goes to something similar?

• If it is clear what an external device or system is, there are
different views about whether they should be shown on
Use Case diagrams.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

• A use case is always initiated by a primary
actor.

• The actor must directly or indirectly be
responsible for the initiation of the use case.

• A use case must deliver a tangible result
back to the user.
• Recall: This is defined in the User Guide as:

“an observable result of value to the actor.”

Use Case Characteristics 1

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

• A use case must be complete.
• It must be a description of a complete

transaction.
• A common mistake is to partition use cases into

smaller use cases that implement each other.
• A use case doesn't actually complete until it

produces an end result.
• This may involve complex dialogue with the

actor.

Use Case Characteristics 2

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

• An <<include>> relationship means that the base
use case explicitly uses the behaviour of a use case
at a specified location in the base.

• The included use case never stands alone, but is only
instantiated as part of some larger base that includes
it.

• An <<include>> relationship is used to avoid
rewriting the same behaviour several times, i.e.
common behaviour is placed in<<include>> use
cases.

<<include>> (1)

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Track order

Validate user

<<include>>

<<include>> (2)

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

• The <<extend>> association represents an
exception or alternative course of action in a
given use case.

• It can only happen dependent on a certain
condition or state of the base use case.

• The extension use case must be completed
before control is returned to the base use
case.

<<extends>> (1)

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

<<extends>> (2)

Buy Product

Extension Points
Payment Info
Shipping Info

Provide Info

<<extends>>

Payment Info

Shipping Info

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

• Use case generalisation is the same (idea) as
class generalisation.

• This is an inheritance structure that is the
same, in essence, as the <<include>>
relationship.

• The child use case inherits all the
functionality of the parent use case and can
override the parent use case.

Generalisation (1)

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

generalisation

<<include>>

Track
order

Validate
user

Retinal
scan

Check
password

Generalisation (2)

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Walkthroughs

• Use cases designed to be a basis of
communication between customer and developer
to work out the functional requirements of the
system.

• An example of a scenario based approach.
• As a consequence make sure that the diagrams you

have produced meet their needs.
• ‘Walk’ the customer through the use case

• and if possible ‘walk’ those who will play a specific
role in the system through it as well.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Validation and Enaction

• The walkthrough idea can be taken one step further
with certain forms of validation
• this is particularly true of the description.

• For example, enactable models of use cases can be
produced so that the user is forced to step through
each action or event (and such that the implications of
the events are made clearer).
• This is an idea taken from process modelling
• Will examine both enactable process and use case models.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
Use your use case

• A use case is actually realised in later
design stages as one or more classes, often
known as a collaboration.
• These may be given life as sequence, activity,

collaboration or state diagrams.
• This link can be traceably documented

through the use of an <<implements>>
relationship.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Use Case Warnings (1)

• Avoid analysis paralysis.
• Use cases are really orthogonal to OO. (Why?)
• The process by which use cases are selected, and by

which scenarios are developed from them, is only
vaguely defined.

• Systematic guidance of what specific scenarios to
elaborate within a given use case is completely
missing.

• UML have gone mad on use case relationships - don’t
religiously use them all.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Use Case Warnings (2)

• UML has no systematic procedure to validate the use
cases against the requirements,
• nor to feed the results back in order to expand the scenarios,
• nor to refine or correct the requirements.

• Though some promising work on guidelines and
dependencies.

• Use cases and scenarios are hardly supported by
present UML-oriented tools.

• Though again we will examine some (including home
grown) approaches.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Write the Use Case

• Don’t waste a lot of time with the diagram
notation and what type of arrows to use.
• Be consistent with the style you pick.

• WRITE THE USE CASE - THIS IS THE KEY
TO SUCCESS.
• Writing the use case is where we describe the

behaviour within a use case ellipse.
• These are use case descriptions.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
Next: Descriptions

• Typically (though may not be) a form of
structured text.

• As we shall see, there is much debate about
guidelines for both their content and structure.

• Most agree the general form akin to:
• Use Case name:
• Actors:
• Context:
• Main flow of events
• Alternative flows of events

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Conclusions

• Use cases allow understanding and common language
among stakeholders.

• Use cases are VERY POPULAR so you WILL come
across them.

• Use cases allow one to describe interactions at the
interface of the machine.

• However, the diagram is more a partitioning.
• The description (really) acts as a specification.

www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
Patterns for Effective Use Cases: Steve Adolph,
Paul Bramble, Alistair Cockburn, Andy Pols

Writing Effective Use Cases: Alistair Cockburn

Scenarios Stories and Use Cases: Through the
Systems Development Life-Cycle: I. Alexander,
N. Maiden

Use Cases: Patterns and Blueprints: Gunnar
Övergaard, Karin Palmkvist

Use Cases, Requirements in Context: Daryl
Kulak, Eamonn Guiney

http://images-eu.amazon.com/images/P/0321154983.02.LZZZZZZZ.jpg
http://www.amazon.co.uk/exec/obidos/ASIN/0131451340/qid=1140034491/sr=1-5/ref=sr_1_2_5/203-5619083-6233543
http://images-eu.amazon.com/images/P/0470861940.01.LZZZZZZZ.jpg
http://www.amazon.co.uk/exec/obidos/ASIN/0201702258/qid=1140035068/sr=1-2/ref=sr_1_2_2/203-5619083-6233543
http://images-eu.amazon.com/images/P/0201721848.01.LZZZZZZZ.jpg

	Use Cases: Overview
	What is a Use Case?
	A definition
	What does it do?
	Why Use Case modelling?
	Use cases for requirements
	Requirements: and use cases
	Use cases - planning
	Use cases - validation
	Use cases - scope
	Use Case Diagram
	Another Use Case Diagram
	Actors In UML
	What is an actor?
	Defining an Actor
	Users, roles, actors and resources
	Identifying an actor -1
	Identifying an actor - 2
	Use Case Characteristics 1
	Use Case Characteristics 2
	<<include>> (1)
	<<include>> (2)
	<<extends>> (1)
	<<extends>> (2)
	Generalisation (1)
	Generalisation (2)
	Walkthroughs
	Validation and Enaction
	Use your use case
	Use Case Warnings (1)
	Use Case Warnings (2)
	Write the Use Case
	Next: Descriptions
	Conclusions

