
1

Enactable (Role) Models

• Continue illustration of process ideas by
reference to role based models.

• Diagrams allow understanding - but often
sacrifice rigour.

• Rigour can be added with..
– Heuristics, measures, formality, enaction

(simulation).
• Initially examine the idea of enaction.

2

Faith, Maths, Validation and
Debugging

• Formal: Rigour: Need checking by experts
• Pragmatic: Typically diagrams:

– Sacrifice rigour for understandability.
– Users validate. Suffer from multiple interpretation

• Enactable. Visual. Try it out.
• Combinations.

– Understandability and rigour.
– Flexibility and familiarity.
– Separation of concerns.

3

RolEnact

• A language for strategic (process) modelling.
• Formal semantics; based upon a condition-

action paradigm.
• Primitives match those of role-based models

(such as RADs).
• Processes described in terms of roles, the

states of these roles, and the activities or
events in which each role may take part.

4

RolEnact Role Instances

• An instance of a role has state, it may have
data attached to it, and it may move to its
next state through an activity. This activity
may be in isolation (an action) or may
involve changing the state of another role or
roles (an interaction or a selection).

• Note the similarity between Roles (like
classes) and instances of roles (like objects).

5

Advantages of RolEnact

• Brings together condition-action and role
based paradigms.

• May be executed on a computer providing a
simple Windows-based interface

• These enactable models are used by two
main classes of users, modellers and
representatives of the client.

6

RolEnact Users

• Modellers: who produce and experiment
with the models
– understand the process description, discover

problems and analyse alternatives.
• Representatives of the client organisation,

who interact with the models by taking the
parts of users.
– Validate models, experiment with scenarios and

provide a vehicle for discussion.

7

Moving Towards Enaction

• RADs describe types, they do not describe
the synchronisation of instances of the roles.
– To run simulations, assumptions need to be

made about the states of instances of roles.
• RolEnact uses the fact that roles (and hence

instances of roles) are viewed as acting in
parallel.
– Parallel threads represented as separate roles.

8

Representing Parallel

• Parallel threads as separate roles, joining
again via an interaction.

• Provides a consistent mapping.
• Decomposes business such that parallel

threads could now be assigned to different
actors.

• Disadvantages: may be a less representative
depiction of the business & may have a
greater number of roles.

9

Building Blocks

• All RolEnact models can be made up of
four basic types of behaviour; action,
interaction, selection, and creation.

• These behaviours allow instances of roles to
move from existing states into new states, to
communicate with each other, to choose and
then interact with other role instances, and
to create new role instances.

10

Relationship to RADs

• Actions & interactions correspond to the
same RAD constructs.

• Selections are interactions between roles
which have not previously communicated.

• Creation allows roles to create other role
instances and to set up identifiers for future
communication.

11

Divisional Director

new project approved

start new project manager

Agree TOR for project

Agree TOR and delegate

Obtain estimate

Give plan to designer

deliver design

start new designer

write TOR for designer

prepare a plan

produce project debrief report

carry out design
quality check

produce design

design OK?no yes

Designer

Project Manager

prepare an estimate

choose a method

Example:
Designer

12

Action

Action Role.Action
Me(before → after)

End

before

after

action

Action Project_Manager.prepare_a_plan
Me(estimate_received → plan_prepared)

End

13

Interaction
Interaction Role1.Interaction

Me(before1 → after1)
Role2(before2 → after2)

End

before1

after1

interaction

before2

after2

Role1 Role2

14

Selection
Selection Role1.Selection

Me(before1 → after1)
Role2(before2 → after2)

End

before1

after1

selection

before2

after2

Role1 Role2

Automatically creates:
Me.Role2:=r,
r.Role1:=Me

15

Creation
Create Role1.Create

Me(before1 → after1)
new Role2

End

before1

after1

R

initial

16

A Role: Director

Create Divisional_Director.newProject_Manager
me(initial → manager_started)
new Project_Manager

End

Interaction Divisional_Director.agree_TOR
me(manager_started → initial)
Project_Manager(initial → agreed_TOR)

End

17

initial

start new project manager

Agree TOR for project

Agree TOR and delegate

Obtain estimate

Give plan to designer

deliver design

start new designers

write TOR for designer

prepare a plan

produce project debrief report

carry out design quality check

produce design

design OK?
no

yes

Divisional
Director

Designer

Project
Manager

prepare an estimatechoose a method

project manager started

initial

initial TOR agreed

designers started

TOR written

delegated

initial

delegated

method chosen

Agree TOR and delegate

delegated

estimate prepared

estimate sent estimate received

plan prepared

plan received

able to design

design produced

checking complete

design delivered

Designer
Estimator

initial

plan sent

ready to design

Considering
States

18

The ‘state’ bar -
indicating the current
state of the Role

The ‘do’ Button
The list of actions
the Role can enact

The abled action which
the Role can enact in its
current state

RolEnact Windows Interface

19

RolEnact for Designer

20

Project Manager
Create Project_Manager.newDesigners

me(agreed_TOR → designers_started)
new Designer
new Designer_Estimator

End

Action Project_Manager.write_TOR
me(designers_started → TOR_written)

End

Interaction Project_Manager.agree_delegate
me(TOR_written → delegated)
Designer(initial → delegated)
Designer_Estimator(initial → delegated)

End

Action Project_Manager.Prepare_plan
me(estimate_received → plan_prepared)

End

Interaction Project_Manager.send_plan
me(plan_prepared → plan_sent)
Designer_Estimator(sent_estimate →
received_plan)

End

Action Project_Manager.debrief
me(design_received → project_completed)

End

21

Designer
Action Designer.choose_method

me(delegated → method_chosen)
End

Interaction Designer.ready_for_design
me(method_chosen → able_to_design)
Project_Manager.Designer_Estimator(received_plan → ended)

End

Action Designer.design
me(able_to_design → design_produced)

End

Action Designer.check_design
me(design_produced → assessing_design)

End

22

Designer

Action Designer.accept_design
me.(assessing_design → accepted_design)

End

Action Designer.reject_design
me(assessing_design → able_to_design)

End

Interaction Designer.deliver_design
me(accepted_design → design_sent)
Project_Manager(plan_sent → design_received)

23

Designer_Estimator

Action Designer_Estimator.prepare_estimate
me(delegated → estimated)

End

Interaction Designer_Estimator.obtain_estimate
me(estimated → sent_estimate)
Project_Manager(delegated → estimate_received)

End

24

Summary: Enactable Models

• Illustrated enaction with very small (proof
of concept) enactable notation.
– Considered mapping from diagram (class

description) to enaction (instance description).
– Illustrated ideas behind client experimentaion

with business model.
• Remember rigour can also be added with..

– Heuristics, measures, or formality.

25

.new and .rol

• In reality a further conversion happens
before ENACT uses the file.
– Translator translates the .new file to a .rol file
– (the real and more poweful RolEnact language).

• Often easier to write a .rol file.
– Consider mapping (macros) .new to .rol

• Examine the main constructs again
– and note subtle additions in amul.rol.

• Examine language description (.act) file.

26

Action

Action ROLE.ACTION
Me(BEFORE -> AFTER)

End

ROLE.addEvent('ACTION).
ROLE.ACTIONReady():=self.inState('BEFORE).
ROLE.ACTIONDoit():=self.setState('AFTER).

27

Interaction
Interaction ROLE1.ACTION

Me(BEFORE1 -> AFTER1)
ROLE2(BEFORE2 -> AFTER2)

End

ROLE1.addEvent('ACTION).
ROLE1.ACTIONReady():=

self.inState('BEFORE1) and
self.ROLE2.inState('BEFORE2).

ROLE1.ACTIONDoit():=
(self.setState('AFTER1);
self.ROLE2.setState('AFTER2)).

28

Selection
Selection ROLE1.ACTION

Me(BEFORE1 -> AFTER1)
ROLE2(BEFORE2 -> AFTER2)

End

ROLE1.addEvent('ACTION).
ROLE1.ACTIONReady():=

self.inState('BEFORE1) and
ROLE2.exists('BEFORE2).

ROLE1.ACTIONDoit():=
(aRole.choose('BEFORE2);
self.setState('AFTER1);
aRole.setState('AFTER2);
self.ROLE2:=aRole;
aRole.ROLE1:=self).

29

Creation
Create ROLE1.ACTION

Me(BEFORE1 -> AFTER1)
new ROLE2

End

ROLE1.addEvent('ACTION).
ROLE1.ACTIONReady():=

self.inState('BEFORE1).
ROLE1.ACTIONDoit():=

(self.setState('AFTER1);
self.ROLE2:=ROLE2.create();
self.ROLE2.ROLE1:=self).

30

Running Enact

• Your mission is...
• Find appropriate version of RolEnact

– Note some graphical tools (REPI)
– Translator files (.new to .rol)
– Basic RolEnact (RolEnact.exe)

• Download / install to a suitable (e.g., home)
machine.

• Play and learn. You will need to use this
later in the course.

31

Radio Operator

Dispatcher

Allocator

Call Taker

new call arrives

asssign CAD number

receive details
(from where?)

enter on
computer

find grid ref
and select sector

receive ack
for details

receive confirmation of
vehicle dispatch

receive details

receive ticket

send to selected sector

print ticket

acknowledge details

instruct dispatcher

instruct radio operator

instruct crew

confirm vehicle dispatch

place in box

contact and instruct vehicle

confirm
receive confirmation of

vehicle dispatch

vehicle status

back at basefree

turn ticket
remove & file
ticket

Original RAD
Revised(Ould)

32

Phone
Dispatcher

Radio
Dispatcher

Allocator

Call Taker

new emergency call arrives with
automatically asssigned CAD number

find grid ref and
select sector (automatic)

receive details

print ticket at Sector desk
(automatic)

n (in call taking area)

1 per sector

1 per sector
1-2 per sector

Ambulance Crew

collect details from caller
in predetermined order,
entering details on computer

response?
duplicate callnew call

examine outstanding tickets etc to
decide which vehicle(s) to send

vehicle status?
on the roadat base

instruct crew

instruct crewacknowledge receipt of ticket

notify of dispatch

notify of dispatch

(one) dispatcher has
notified dispatch

remove call from screen
(automatic?)

about 35

place ticket in slot

place ticket in slot

arrive back at station

notify now back at station (how?)

remove, check and file ticket

becomes free

notify now free (how?)

turn ticket round in slot

attend scene

attend scene

continue call as necessary

send details
to selected sector

(automatic)

mark call complete

instruct phone dispatcher

instruct radio dispatcher

for each vehicle

RAD from
Description

(Ould)

	Enactable (Role) Models
	Faith, Maths, Validation and Debugging
	RolEnact
	RolEnact Role Instances
	Advantages of RolEnact
	RolEnact Users
	Moving Towards Enaction
	Representing Parallel
	Building Blocks
	Relationship to RADs
	Example:Designer
	Action
	Interaction
	Selection
	Creation
	A Role: Director
	RolEnact Windows Interface
	RolEnact for Designer
	Project Manager
	Designer
	Designer
	Designer_Estimator
	Summary: Enactable Models
	.new and .rol
	Action
	Interaction
	Selection
	Creation
	Running Enact
	Original RAD Revised(Ould)
	RAD from Description (Ould)

