
www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Analysis – then and now

• Recap of terms
• What analysis should be?
• Traditional and ‘modern’ approaches
• Problems with analysis
• Other recent approaches 
• Problem frames
• Process oriented approaches
• Recap and Implications



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Recap of terms

• The problem domain (application domain):
• that part of the world within which the problem 

exists (and within which the solution system will 
operate)

• Requirements:
• the effects that the solution system is required to 

produce in the problem domain (PD)
• The solution system (SS) (aka. the machine):

• the system (to be produced) that will bring about the 
required effects in the problem domain

• The current system (CS)
• a pre-existing (solution) system that serves a purpose 

similar to that of the new solution system



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Where analysis fits (recap)

problem
domain interface

solution
system

analysis specification designTasks :-

Systems :-

analysis/
requirements
document

specification
document

design
document

Outputs :-



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

delivers

delivers

delivers

Requirements in place
GOAL 

MODELLING

REQUIREMENTS

SPECIFICATION 
DECISIONS
I/O / HMI etc

G
O
A
L
S

R
E
Q
S

Requirements 
Document

Specification 
Document

Goal 
Document

Determines

Traceability

(hopefully)Informs

Fulfils

Fulfils

Traceability

(hopefully)



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

• Describing / considering the goals 
• Gaining understanding of the problem:

• Modelling the domain / context
• Modelling the processes within the domain
• (Examining any pre-existing solution system)

• Describing the Problem 
• Describing the processes
• Discovering the requirements (problems)
• Documenting the requirements (problems)
So is it?

So analysis should be:



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

• Inconsistency. Bray gives the following examples:
• “the analysis of requirements
• analysis provides a description of what a system will do
• the process of modelling a system in its environment
• most attention in the analysis phase is given to elaborating the functional 

requirements
• analysis is the identification, analysis and specification of requirements for a 

specific application
• study of a specific domain of interacting objects for the purpose of understanding 

and documenting their essential characteristics
• designing a solution to a problem
• analysts, designers and implementers should all possess the same systems model
• the thought processes flow so naturally from analysis to design that it may be 

difficult to tell where analysis ends and design begins
• the models that are produced during design show how the various parts of the 

system will work together; the models produced during analysis show what is in the 
system and how those parts are related to one another”

Definitions of Analysis



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

• “Traditional” analysis (1950’s)
• Structured Analysis (late 1960’s)
• “Modern” Structured Analysis (late 1980s)
• Object Oriented Analysis (1990s)
• Problem Domain Oriented Analysis (2000)
• Process Oriented Requirements Engineering

• from mid to late 1990s, but latterly issues resurfaced 
within:

• Requirements Engineering for Business Needs and IT 
Alignment (2005 onwards). 

• Visual Development Environments (VIDE) – 2006 on

Historically



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
• “There’s a big temptation to believe that you can describe 

the application domain and the machine all together, in one 
combined description. . . . . .

• But if you only make one description, you’ll surely be 
tempted to put things into it that describe only the machine, 
and to leave out things that describe only the application 
domain. After all, you have to describe the machine sooner 
or later, don’t you ?

• You can see the results clearly in many object-oriented 
modelling descriptions. Often they are accompanied by fine 
words about modelling the real world. But when you look 
closely you see that they are really descriptions of 
programming objects, pure and simple. Any similarity to 
real-world objects, living or dead, is purely coincidental.”

Michael Jackson [JACK95]

Analysis (SA & OOA)



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Structured Analysis

• Familiar with SA/SD?

• Move to graphical modelling 
notations; partitioned, levelled and 
minimally redundant.

• Structured Systems Analysis 
(Gane & Sarson in 1977).

• Structured Design (Yourdon and 
Constantine 1979).

• Tom deMarco’s: Structured 
Analysis and System Specification 
from Yourdon Press in 1979.

• Many years taught Yourdon’s 
“Modern Structured Analysis”, 
1989.

SYSTEM

Data 
  view

E R 
diagram

Process 
   view

DFD

Timing and 
control view

FSM

    Data 
Dictionary



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

• Essential model ‘the essence of the system’. 
• This contains an Environmental Model (describing the 

environment) and a Behavioural model.
• Environmental model consists of:

• Context Diagram, Statement of Purpose & Event List.

• BUT “analysis paralysis” (bigger problems, ever 
“enhanced” method), dubious value added.

• Heavy bias towards DFDs: often amounts to 
procedural specification. (Sometimes want that)

• Problems where no pre-existing system.

Yourdon SA / SD Overview



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM
Context Diagrams

Order 
Processing

Customers
Warehouse

Accounts
Dept.

Orders

Acknowledgements

Shipping
Info

Accounting
Info

“The Context Diagram 
documents the domain of 
study by showing the set of 
data flows that cross into and 
out of the domain.”
Tom DeMarco, Structured Analysis 
and System Specification, 1978.



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Problem and System

• DeMarco’s ‘domain of study’ is the system.
• “Boxes (representing sources and sinks) are used rather 

sparingly in Data Flow Diagrams, and usually not in a very 
rigorous fashion. Since they represent something outside the 
area of our major concern, they exist only to provide 
commentary about the system’s connection to the outside 
world.” - DeMarco.

• In Structured Analysis, the Context Diagram shows the 
context of the system, not the context of the problem.
• Contrast with Problem Frames (later), or process models. 

• NB: Still very useful to delineate OUR area of interest 
or system scope.



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Object Oriented Analysis

• Seamless Development
• Object-oriented programming promised the 

idea of encapsulation and this presented a 
way to represent things in the real world. 

• A software object could be represented as a 
design object which was a representation of 
an analysis object.

• The assumption was that to represent the real 
world as an object was simple.



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Objects in Analysis?

• Often objects in the ‘problem domain’ are 
endowed with properties which real world 
objects would never exhibit. 
• When did you last send a message to a paycheck?
• What reply would you get back if you sent a message 

to an aeroplane?
• What methods does a tax return perform in response 

to messages it receives?
• When the sun rises, does it send a message to each 

bird to tell it to start singing?



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

OO Again (or is it UML?)

• Bray notes:
• The lift controller. Analysis has a ‘floor object’, 

which has methods within it.
• YRRS: Has methods within people in the problem.

• In addition OOA (and the UML in general) does 
not allow understanding of behaviour, process, 
or dependencies among events, (use cases), all 
of which are important in understanding user 
processes.  



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Objects are fixed

• Each object belongs to a fixed class, determined 
when the object is created. 

• But the world is not like this: 
• pupils become teachers
• Students become graduates: well some of them ☺
• Bills become laws
• Partnerships become corporations
• Doctors become lawyers
• Cotton mills become offices or hotels
• Caterpillars become butterflies 



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Inheritance

• Each object inherits properties and behaviour
from just one class at the next level up in the 
tree. That’s single inheritance. (Unless we have 
C++). 

• But the world is not like this:
• The logistics manager wants to classify the 

company equipment as production plant, office 
equipment and distribution vehicles.

• The finance director classified it as owned, rented 
and leased.

• The two classifications can’t coexist in the same 
single-inheritance hierarchy.



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Active and Passive

• Objects are reactive rather than active. If you 
don’t send a message to an object, it won’t do 
anything.

• But the world is full of individuals, like
• People (who may initiate interactions)
• Vessels in chemical plants
• Government departments
• who all do things spontaneously.

• All these restrictions have programming solutions 
- but they are not so good at representing the 
richness of the world.



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Use Cases

• UML tells us that the way to do 
requirements engineering is to capture the 
functions that users want when they use the 
computer.

• It’s the first question we ask our customers, 
“What functionality do you want?”
• This way madness lies.



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Borrow a book

Renew a loan

Return a book

Library 
Member

A Use Case Example



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Issue a book

Issue a book renew

Process a book return

LibrarianLibrary 
Member

The Library Member’s requirements: borrow 
a book, return a book, renew a loan

The Librarian has to: issue a book, process a book 
return, and issue a book renewal. The Library 
Member’s requirements aren’t quite the same as 
the Librarian’s tasks.

The UC Problem



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Use Case problems

• So what happens when a librarian’s job is to loan books out 
and collect returns?

• What happens to the Library Member when we cannot show 
actors one step removed from the machine? 
• Do we just forget about them or fudge them?
• But isn’t a library’s purpose to provide books and services to its 

library members?
• And if we ignore this fact, what are we essentially doing?
• We’re ignoring the problem context, andwe’re ignoring the 

requirement: and that’s bad
• Dependencies in Descriptions (big problem to come)
• Note. We will (of course) adopt use cases anyway!



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Story So Far

• SA/SD – concentration on system context.
• Tendency to model existing system (rather 

than the ‘essence’ or ‘business need’, or 
even the process.

• Still provides useful notational tool-kit
• OOA. Real world objects? Not really.
• Use cases: Oh dear, oh dear oh dear…
• So what else is there?



www.sosym.co.uk Introduction to Requirements Engineering

SoSyM

Homework / Exercise

• EX 1 Find an example of analysis (structured or 
OO, or even use cases) that you don’t like and:
• Say what’s wrong with it. Remember:

• Does it really model the problem or domain?
• Are the objects real?
• Does it reflect the problem?

• IFF you can’t find one, try and invent one. 
• Send to me (as 1 or 2 Slides: e.g., picture and critique).

• EX 2: Types of Requirements (courtesy if Ian 
Bray). 
• Identify type from given list. 


	Analysis – then and now
	Recap of terms
	Where analysis fits (recap)
	Requirements in place
	So analysis should be:
	Definitions of Analysis
	Historically
	Analysis (SA & OOA)
	Structured Analysis
	Yourdon SA / SD Overview
	Context Diagrams
	Problem and System 
	Object Oriented Analysis
	Objects in Analysis?
	OO Again (or is it UML?)
	Objects are fixed
	Inheritance
	Active and Passive
	Use Cases
	A Use Case Example
	The UC Problem
	Use Case problems
	Story So Far
	Homework / Exercise

