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This section describes the design of the Artificial Intelligence (AI) module 
supporting the Fraud Detection (FD) and Business Process (BP) aspects of 
network management provided by the MDS. The content is outlined below, 
and covers design processes, data analysis and prototype results, as well as 
describing software engineering concerns. 
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1.11.11.11.1 BackgroundBackgroundBackgroundBackground    

The tasks of the fraud detection (FD) and business process (BP) module are 
defined in the Description of Work as: 

• FD — “finding fraudulent uses by subscribers”  

• BP — “the pattern of uses generated by clients” 

The source data for FD/BP comprises sets of Call Detail Records (CDRs), 
stored by the billing system and describing individual call events. CDRs may 
include a range of information, such as: 

• Phone number 

• Other party phone number 

• Direction (to network, from network, forwarded) 

• Call start date 

• Completion status (completed, dropped) 

• IPS user label (base station) 

• Call duration 

An individual call does not carry much information about subscriber 
behaviour, so it is necessary to build a profile of behavioural patterns over a 
longer period, encompassing, possibly, many calls. Such profiles serve two 
purposes: they allow deviations from established norms to be detected, and 
they facilitate the characterisation of subscribers by behavioural patterns. 
The processes of profiling CDRs and identifying variations in patterns of 
behaviour are identical, regardless of whether those variations are related to 
FD or BP, hence, these aspects are treated together. It is the domain expert’s 
task to determine the impact, or otherwise, of the results from the FD/BP AI 
module of the MDS. 

The purpose of the MDS is to explore the capabilities of selected Artificial 
Intelligence (AI) techniques for addressing various network management 
challenges, and to offer a proof-of-concept implementation. AI systems 
typically require some form of training process prior to deployment (although 
incremental learning / online adaptation is possible). Hence, an important 
focus of the design phase is a detailed consideration of the significant 
learning paradigms and their implications. Indeed, from a software 
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engineering perspective, concerns focus more on the API and cross-boundary 
interactions, rather than low level design and algorithmic details. 

The following sections outline the process involved in the design of the AI 
module and explore the AI context, before progressing to describe the data 
analysis and prototypes, and, then, the system context and module design, 
in sufficient detail to facilitate understanding of its function and interaction 
with other parts of the MDS. Finally, quality of service requirements are 
considered, with proposals for the assessment of performance during the 
evaluation phase of the project. 

1.21.21.21.2 ProcessProcessProcessProcess    

This section of the design document reports upon the current state of 
development of the FD/BP AI module. In this sub-section, the processes 
involved in, and leading up to, the design of said module, are outlined. The 
main inputs to the design process came from the following sources: 

a. Review of the literature concerning AI techniques for MDS. A 
comprehensive review was developed, and reported in D2.2.1. The 
purpose was to explore the main AI techniques that could be used to 
construct a misuse or anomaly detection system. This review 
considered work both within and outside of the telecommunications 
context. The review was intentionally broad, and was developed prior 
to the receipt of extensive data samples and prior to extensive 
discussions on system requirements. As research progressed, and the 
requirements were formulated, more refined consideration of specific 
literature was possible, relating primarily to pre-processing of CDRs 
and development of neural techniques for anomaly detection. 

b. Evaluation of potential solutions. An understanding of the project goals, 
gained through consortium discussions early in the project, and an 
appreciation of the nature and characteristics of CDRs, gained from 
the literature, allowed theoretical consideration of potential AI 
solutions to the FD/BP problem. From this, the need for a profiling 
approach emerged, and, based on the desire for generalisation 
capability, a neural solution was sought. Few options offer the ability 
to actually profile the user behaviour over an extended period, but 
through background research in different, but related, domains, a 
technique was identified, that could be adapted for this purpose. Given 
the lack of availability of usable data at the time, a generic solution 
was deemed appropriate. Various prototypes were then constructed (as 
described below), and evaluated on synthesised data sets. After initial 
evaluation of the feasibility, consideration of some preliminary CDR 
samples, and associated information, provided by Comarch, confirmed 
the suitability of the selected approach. Comarch played an important 
role in delineating the concerns of the FD/BP module within the 
overall MDS, and providing domain knowledge in the FD area, which 
in turn fed into the domain models. 

c. Development of domain models. This was a key step in gaining 
understanding of the AI module context, and later clarifying the 
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requirements, with the resulting models reported in the requirements 
document (D2.3.1), and the subsequent requirements update (D2.4.1). 
Following work on use cases, high level system decompositions, 
interaction models, etc., two complementary modelling approaches 
were selected: behavioural process models (depicted as Role Activity 
Diagrams, RADs), showing the actions that are required from the 
domain from the major roles (either people or sub-systems), the 
interactions amongst those roles, and the dependencies and 
interdependencies of those actions; and a procedural model showing 
the system boundaries for FD/BP sub-systems, their input and output 
data, and those other major processes and systems with which they 
will exchange data. This model not only provides a context for the 
requirements, but also delineates the sphere of involvement for 
FD/BP, and shows where the data must cross sub-system boundaries. 
These models were again informed by discussions with Comarch, and 
by consideration of the high level business needs reported by Comarch 
and ERA in D2.1.1. 

d. Analysis of data. Following intensive discussions concerning data 
formats, quantity and quality of data, and feasibility studies on the 
part of the operator (ERA), a sample set of CDRs for 500 subscribers 
over a one year period was provided. No accompanying information 
was provided by the operator, but early data mining and visualisation 
of various properties of the data revealed that some subscribers 
exhibited markedly different behaviour from perceived norms. 
Following discussions with the operator, it emerged that the data set 
did include examples of known fraudulent behaviour. This, then, 
allowed the investigation of various derived features, and the 
comparison between those features for sets of normal and abnormal 
data. Statistical models of the CDR data were derived, for gaining 
insight into the problem, as well as supporting future synthesis of test 
data. This ‘real’ data allowed the generic technique, previously 
developed based on synthesised data, to be verified as suitable for this 
specific domain. 

e. Development of prototypes. Prototypes were developed initially for 
verification of the feasibility of the proposed approach, and later used 
also to support the analysis of the data samples. Various approaches 
were trialled, some based on data mining, others on anomaly and 
misuse detection. On receipt of the 500 subscriber data set from the 
operator, the prototypes were used to gain some indication as to the 
likely success for FD in particular. Results indicated by the AI 
approach as potentially anomalous were subsequently verified by the 
operator as true positive indications. Hence, the prototypes have been 
found effective for the identification of the fraud hidden in the data 
supplied by the operator. The remainder of the design process, and 
subsequent implementation, therefore focuses on refactoring the 
existing code base, development of the specified interfaces, and general 
software engineering concerns. 
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1.31.31.31.3 ArtiArtiArtiArtificial ificial ificial ificial intelligence contextntelligence contextntelligence contextntelligence context    

A plethora of artificial intelligence techniques have been applied to the 
problem of misuse detection (in the general sense), including inter alia expert 
systems, case based reasoning, artificial neural networks, evolutionary 
computation, swarm intelligence, artificial immune systems, and agent 
based systems, as well as a wide variety of statistical approaches to 
clustering, classification and regression. These have been reviewed in 
D2.2.1, which identified rule based systems as the dominant approach. This 
is also the approach currently used by the operator (PTC). Drawbacks with 
canonical rule based systems, of import in this domain, include: 

• The need for a large knowledge base of rules for detecting known 
misuses, often requiring considerable investment in expertise and 
knowledge engineering. 

• The lack of generalisation ability to unseen misuses, with such 
systems being built on the principle of misuse detection rather than 
anomaly detection. 

• The lack of automated processes for adapting to new misuses and/or a 
changing environment. 

• The interaction between rules in the knowledge base, which can make 
updating the system to cover a new misuse a non-trivial task. 

• The need for house-keeping to purge the system of out-of-date or 
conflicting rules. 

Contemporary AI techniques are a promising alternative, as they tend to 
offer, to varying degrees, the ability to learn, generalise and adapt, and, 
hence, address the following key issues: 

• Automating the task of populating the ‘knowledge containers’ prior to 
system deployment. 

• Enabling the generalisation of detection capability to unknown 
misuses. 

It should be noted that these activities are not without user involvement. For 
example, the initial population of knowledge containers would be based on 
training data prepared by the user, and subsequent adaptation would 
require the system to be instructed when false positives or false negatives 
occur. The effectiveness of any AI based approach depends, to a considerable 
degree, on the nature of the data, not just in training but in use. AI based 
systems, explicitly or implicitly, essentially provide a mapping from some 
input space (e.g. features) to an output space (e.g. classes). When moving 
away from largely deterministic systems, it is worth bearing in mind the 
fundamental premises of the AI techniques involved; principally: 

• That it must be possible to infer the output from the input, i.e. the 
data set being processed must have the appropriate information 
content to arrive consistently at the desired conclusions. This property 
is essential for learning. In classification terms, there is the concept of 
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irreducible error, which is a measure of the extent to which the feature 
space does not permit the correct classification of samples (e.g. due to 
overlapping classes), regardless of the technique used. 

• That similarity in the input space, however that might be measured, 
must map to similarity in the output space. Note that the converse is 
not necessary; different inputs could map to the same or similar 
outputs. This property is essential for generalisation, and the 
regularity of the input-output mapping will impact on the effectiveness 
of the system. 

Whilst these may seem obvious preconditions, the nature of any data to be 
correlated / profiled for the detection of misuse needs to be examined to 
confirm that these are satisfied before AI techniques can be applied with any 
degree of confidence. In particular, the preparation of data samples, from 
which to derive the initial population of the knowledge containers, should 
consider the ‘coverage’ of misuse classes. For example, a misuse detection 
(as opposed to anomaly detection) mechanism is not likely to detect 
unknown misuses that are fundamentally different in nature from the 
known misuses on which it was trained. It should also be noted that the 
more ‘flexible’ architectures, such as neural and evolutionary systems, 
reduce the explanatory power of any detection system in which they are 
employed. A major advantage of canonical rule based systems is that they 
can present the user with the chain of reasoning by which they arrived at 
their conclusion. Other techniques, such as case based reasoning, can offer 
some explanation based on similarity measures, whilst others are often 
unable to present any indication of why they reached a particular 
conclusion. This is a natural dichotomy, rather than a weakness in the 
techniques - if one requires the flexibility to learn, generalise and adapt, then 
the determinism and explanatory ability of rule based systems must be 
sacrificed. 

1.3.11.3.11.3.11.3.1 Learning paradigmsLearning paradigmsLearning paradigmsLearning paradigms    

The objectives of FD and BP coincide, in that they both require a mechanism 
for profiling subscriber behaviour. For FD, the mechanism must be capable 
of raising an alarm when subscriber behaviour deviates significantly from 
learnt norms. For BP, the mechanism must allow the identification of similar 
behavioural patterns within a given data set. This mechanism is referred to, 
here, as a ‘detector’. Hence, the objective of the learning strategy is to create 
one or more detectors capable of differentiation between normal and 
abnormal behaviour that may either be used for fraud detection or to classify 
subscriber behaviour. In a sense, once a detector is capable of fraud 
detection, it may also be used to support the business process aspects of the 
MDS, and, further, one may consider the potential of FD as the most 
significant of the two for revenue protection / optimisation, hence, the FD 
aspect forms the primary focus. 

The success of a misuse detection system can be judged by two measures 
(although other forms are encountered within the literature): 
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• Detection rate 

• False alarm rate 

This may be decomposed into true positive (TP), false positive (FP), true 
negative (TN), and false negative (FN) indications, such that, if in a sample of 
size N there are X normal patterns and Y abnormal patterns, X + Y = N, then 
the detection rate is TP / (TP + FN), and the false alarm rate is FP / (FP + 
TN). 

There are two primary learning strategies: 

• Learning from previous examples of misuse. Somewhat confusingly this 
is often referred to as misuse detection, whereas, within the MDS 
documents, misuse detection is often considered in a more general 
sense. Adopting this strategy can lead to a system with poor 
generalisation ability (e.g. it cannot generalise to novel misuses that 
are ‘significantly’ different from the misuses on which the system has 
been trained. Thus, there is a tendency for the system to issue false 
negatives. 

• Learning from previous examples of normal behaviour. This is often 
referred to as anomaly detection. The assumption is that patterns of 
behaviour that differ from those learnt from (assumed) normal 
behaviour constitute a misuse. This approach is particularly able to 
detect novel misuses, but, since it is difficult for a data set to capture 
the entirety of normal behaviour, this strategy tends to issue false 
positives. 

Neither of the above approaches is entirely satisfactory. Hence, many hybrid 
systems employ a combination of techniques, some working on the misuse 
detection principle, others on the anomaly detection principle. It would not 
make sense for a contemporary correlation / profiling engine not to provide 
both functionalities, for deployment at the discretion of the end user. A key 
point is to manage the user’s expectations regarding detection rates and 
false alarm rates. As with any AI system, the quantity and quality of the 
training data is paramount. This is equally true for both misuse and 
anomaly detection: in the former, for ensuring that the ‘essence’ of misuse is 
sufficiently captured to enable learning the true characteristics indicative of 
misuse and, hence, generalisable to new cases of misuse of the same class; 
in the latter, for ensuring that a sufficiently rich picture of normality is 
offered such that false positives are kept to manageable quantities. It is 
worth noting that training data is not necessarily static. That is, training 
should, arguably, be considered as an ongoing process, to reflect changes in 
environment, technology and subscriber behaviour. 

In classification problems, particularly those characterised by small sample 
sizes but many features, the problem of ‘spurious correlations’ arises. There 
may be many ways of effecting the correct classification on the training set, 
without properly learning the underlying model. This is not a problem with 
the AI techniques; it may not be perhaps what would be in the mind of a 
human designer, but an AI based learning paradigm will infer what it will in 
order to try and solve the problem. It is possible to overcome this by 
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incorporating additional domain knowledge, or by modifying the nature of 
the training data itself. Both require some a priori knowledge of the patterns 
that lead to a misuse, and, perhaps, properties of normal patterns. It is 
difficult to address if there is insufficient data, or domain knowledge 
concerning the data, such that an expert user could not identify, manually 
or automatically, when possibly inappropriate solutions have been learned. 

In general, there may be many spurious correlations within a data set, which 
can only be detected and addressed by increasing the quantity and/or 
quality of training data, or through user involvement, where incorrect 
classifications on unseen data are subsequently used to adapt the training 
data or learning process. As the feature space increases, the probability of 
finding spurious correlations similarly increases. In this case, to allow the 
learning process to identify the true pattern of import, the quantity of 
training data must be increased until sufficient examples are provided such 
that it is not possible for the technique to correctly classify all examples 
without learning the true underlying relationship. 

1.3.21.3.21.3.21.3.2 Training scenariosTraining scenariosTraining scenariosTraining scenarios and domain knowledge and domain knowledge and domain knowledge and domain knowledge    

Whilst the quantity of data is important, and the requirements will vary 
depending on the nature of the data (such as the complexity of patterns to 
be detected), the degree of domain knowledge available for training will also 
impact on the nature and quality of the detectors created. Three broad 
scenarios are considered here, depending upon the level of domain 
knowledge available: 

a. Labelled examples of normal and misuse behaviour. 

b. Examples of normal behaviour only. 

c. Examples of unknown behaviour. 

Scenario (a) is ideal, and typical of supervised learning. The purpose of the 
learning process is to develop a detector that correctly classifies the training 
data as normal or abnormal (this could be divided into multiple classes, with 
each detector identifying one or more given misuse classes). Supervised 
learning is based on feedback on how well a given detector or set of detectors 
performs on the training data, which is often used to determine an error 
measure. Learning can be viewed as a search process, which seeks to find a 
combination of model variables that minimises this error. In the absence of 
domain knowledge, the learning process typically begins with one or more 
random detectors. It then uses the error measure to adapt these detectors 
with a view to minimising the error. 

Scenario (b) is less ideal, but can be used to build an anomaly detection 
system, based on essentially unsupervised techniques. Such a system is 
trained to learn the essence of the input data such that deviations from 
normality can be detected by a difference in a response compared with that 
of normal data. The challenge, here, is to ensure that the training data offers 
sufficient coverage of normal behaviour, so that false alarms are minimised, 
and abnormalities are not present within the training data, so that a 
reasonable detection rate may be achieved. 
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If an anomaly is detected, it must be investigated by an expert to determine 
whether it is a misuse or simply innocent behaviour that was not 
represented in the training data. If confirmed, the misuse can be added to a 
database of known misuse scenarios (thereby building a database that could 
later be used for supervised training). If unconfirmed, the detector may be 
discarded and, possibly, the training data updated to prevent the 
subsequent creation of further incorrect detectors. A strategy for maintaining 
the training set(s) is required to prevent endless expansion. 

Unlabelled data, scenario (c), requires an unsupervised learning strategy; 
there is no information that could be used to guide a conventional learning 
approach. Techniques such as clustering, dimensional scaling, feature 
maps, and regression, are used to explore patterns within the data. This is 
generally referred to as data mining. The underlying assumption is that the 
patterns observed by such techniques (if, indeed, patterns are identified) are 
somehow related to normal and anomalous behaviour. That is, anomalous 
behaviour is statistically different from normal behaviour. Where this does 
not hold, the data mining will not be able to identify patterns of use in this 
domain. Further, patterns may be identified based on other characteristics 
that are not of interest to the problem of misuse. Hence, the success of such 
a process is highly unpredictable. Patterns identified within the data have to 
be examined by domain experts to ascertain what, if anything, they may 
mean in the context of the domain. This is, therefore, a purely offline 
process. On the other hand, where there is insufficient knowledge of the 
domain, data mining and subsequent expert analysis might lead to identified 
misuses that can then be incorporated into a training set for supervised 
learning to producing detectors for online monitoring of activity. 

In all scenarios, it must be possible to distinguish between normal and 
abnormal behaviour based on the features available. If a clean separation is 
not possible, misclassification will occur. Further, when considering profiling 
of behaviours over an extended period, it is possible that a small number of 
unusual calls within the period may be outweighed by the remaining normal 
behaviour and not show up as an anomaly. 

1.3.31.3.31.3.31.3.3 GeneralisationGeneralisationGeneralisationGeneralisation    

The benefit from an AI approach comes not only from automating the 
learning (knowledge discovery) process, but also from generalisation. In 
scenario (a), one would hope that a trained detector would detect not only 
the specific misuse examples included within the training data, but also 
misuses that are ‘similar’ in nature. In scenario (b), one would hope that a 
trained detector will have learned the essence of normality such that any 
deviations from learned norms are detected. Not all techniques within the 
broad field of AI offer generalisation capabilities. Neural networks are the 
obvious example of a paradigm that does, and it is advantageous, for the 
maximisation of detection rates, that generalisation is possible. Even with 
such a technique, training is a difficult process to get right, and the notion of 
over-fitting, where the detector effectively develops a look up table for the 
specific training data and shows little ability to respond correctly to unseen 
data, becomes a relevant concern. 
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An automated learning system potentially offers other, less obvious, benefits. 
For example, it may avoid the implicit bias that expert analysts may bring 
when developing, say, a rule based system, and thus form a completely 
different (possibly more effective) view of the problem. Further, whilst experts 
are limited, in general, to capturing the essence of relatively simple 
relationships amongst a small set of variables, an automated learning 
system may effectively process a larger feature space, and extract more 
complex relationships (derived knowledge). 

1.3.41.3.41.3.41.3.4 Adaptation and User InterventionAdaptation and User InterventionAdaptation and User InterventionAdaptation and User Intervention    

AI engines are often employed within dynamic environments. That is, 
environments in which the patterns of interest may vary with time. It is also 
likely that the learned patterns are not completely reliable, and give rise to 
either/both false positive or false negative indications. Hence, it is necessary 
to consider mechanisms for user intervention and adaptation. In cases 
where there is only partial knowledge of misuses, user intervention is 
essential. 

On identification of a misuse, the relevant portion of the source data must be 
processed by an expert analyst to verify that a misuse has occurred. If it is 
found to be a false positive, the case should be added to the training data 
and the detectors retrained to prevent further occurrence of the false alarm. 
Note that a false alarm could be raised through either poor 
training/generalisation or a change in the environment such that previous 
misuse patterns no longer accurately indicate misuse. Similarly, misuses 
may be identified by an expert analyst that the AI engine overlooks. The 
anomaly detection approach might be useful in dynamic environments to 
pick out particular patterns that the system sees as differing from normal 
behaviour. Whether this results in an updated view of normality or a new 
misuse detector, user intervention is required. Data mining may be 
employed in an offline process to identify patterns of interest in the data. 
These are then explored by an expert analyst to determine whether any such 
patterns are indicative of misuse. Where this leads to improved 
understanding of normality and/or abnormality, the user must be able to 
update training sets and retrain existing detectors or, where anomaly 
detection techniques are used, the database of normal behaviour needs to be 
updated to prevent incorrect novelty detectors from being produced. 

1.3.51.3.51.3.51.3.5 SummarySummarySummarySummary and recommendations and recommendations and recommendations and recommendations    

The available data will be the single most significant determinant of AI 
technique selection. However, regardless of the initial training scenario, over 
time, knowledge will be extracted that enables one to move from, say, data 
mining to anomaly detection, or from anomaly detection to misuse detection. 
Thus, an effective solution to this problem requires a hybrid approach that 
supports this process, and can be refined and improved in deployment. 

From the preceding discussion, the following expectations emerge: 

• Misuse detection, given examples of known misuse behaviour. 
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• Anomaly detection for unknown misuses based on examples of normal 
behaviour. 

• Offline data mining process for identifying candidate behaviours for 
expert analysis. 

• Selection of techniques with the ability to generalise from learned 
behaviours to unseen behaviours. 

• Support for user intervention, for highlighting incorrect indications, 
adjusting training data and retraining detectors. 

The latter concerns management of the ‘knowledge repository’ and is covered 
by the Decision Support Module (DSm). All other concerns are catered for by 
the FD/BP approach. 

1.41.41.41.4 Overview of Overview of Overview of Overview of the the the the approachapproachapproachapproach    

The preceding section has outlined both the expectations for an AI approach 
to misuse detection (in the general sense), as well as constraints / issues 
related to the domain knowledge available, especially where it affects the 
quality and quantity of training data. In this section, the means of 
addressing these expectations is outlined. 

1.4.11.4.11.4.11.4.1 Building domain knowledgeBuilding domain knowledgeBuilding domain knowledgeBuilding domain knowledge    

The primary concern in designing the FD/BP module was a lack of domain 
knowledge. Following intensive discussions with the operator, and their 
subsequent feasibility studies, it was found that sufficient (e.g. in terms of 
quality, quantity, or domain knowledge) training data could not be provided 
to support a misuse detection approach, since only one misuse class was 
known. For anomaly detection, there is sufficient training data, if certain 
assumptions are made concerning normality. Data mining is possible, but 
verification of found patterns requires expert involvement and is a time 
consuming process. Hence, the challenge can be summarised as being one of 
moving from a situation of minimal domain knowledge, to building a 
repository of derived knowledge. This process may take considerable time, 
but should be supported by the approach. That is, first one may consider the 
identification of patterns using data mining techniques. These could help in 
isolating seemingly normal behaviour under certain assumptions (e.g. that 
normal behaviour is more prevalent than abnormal behaviour). Since fraud 
is estimated to run at somewhere in the region of 3% of turnover within the 
mobile telecommunications market, this is considered a safe assumption 
given a reasonably large random sample of data. Gaining confidence in the 
normality of a given set of data enables an anomaly detection approach to be 
deployed. This involves the training of one or more detectors on the 
presumed normal data, and then using these to identify when current 
behaviours deviate markedly from learnt norms. Such deviations are then 
subjected to expert investigation, to ascertain whether they represent: 

a. Fraud or other misuse cases. 

b. Non-fraudulent behaviours of interest from the perspective of the 
operator’s business processes. 
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c. Non-fraudulent behaviours of no interest to the operator. 

In case (a), in addition to responding to the fraud or other misuse problem 
directly, one can start to build a set of known cases (i.e. labelled data) to 
support the training of future detectors following a supervised (misuse 
detection) learning paradigm. This may generally be considered to offer the 
maximum potential for the detection of future misuses of the same or similar 
nature. Similarly for case (b), although it may be beneficial to separate such 
concerns from misuse detection. Case (c) represents a false positive 
indication, for which some adaptation of the anomaly detector may be 
considered desirable, particularly if many false alarms are being generated. 
Such adaptation may be accomplished by modification of the training data 
and retraining of the detector. Hence, there is a need to retain training data 
for subsequent adaptation. This is within the scope of the DSm. 

The mechanisms by which domain knowledge may be gradually increased, 
with the support of domain experts, is depicted in Figure 1. Expert 
involvement is denoted by the dashed lines, whilst processes relating to the 
provisions of the MDS are denoted by solid lines. As stated in the 
requirements document (D2.4.1), the data mining will be supported by 
existing open source data mining tools (such as Weka), whilst anomaly 
detection and misuse detection will be implemented within the AI module 
itself. 

 

Figure 1. Process of building domain knowledge from initially 
unlabelled data. 

1.4.21.4.21.4.21.4.2 AAAArtificial inrtificial inrtificial inrtificial intelligence basedtelligence basedtelligence basedtelligence based solution solution solution solution    

The solution to be implemented within the MDS is depicted, at a high level, 
in Figure 2. Sets of Call Detail Records (CDRs) are processed to extract 
features that enable subscriber behaviours to be profiled. In training, an 
unsupervised neural network is developed by an evolutionary learning 
algorithm (a hybrid of genetic algorithms and particle swarm optimisation). 
The training process results in a network (or detector) that, for a given set of 
input CDRs, indicates the extent of deviation from the behaviours present 



 13 

within the training data. This deviation is a continuous (dimensionless) 
output that may then be thresholded to generate alarms, or used to 
prioritise investigations. Two subsystems are therefore required: training, 
based on historic data, and detection, typically based on online data. 

 

Figure 2. Artificial intelligence based solution to meet the FD/BP 
requirements of the MDS. 

The expectations, outlined in Section 1.3.5, are addressed by this solution, 
as follows: 

• Misuse detection. By training the profiler on data containing instances 
of known misuses of a given class, deviation in the output of the 
profiler is indicative of normality. This is a novel approach, insofar as 
one would normally attempt to train an AI engine for misuse detection 
on both positive and negative examples. However, this approach as 
two advantages: first, it allows the detection of specific misuses by 
specialised detectors, without the need for different techniques to be 
implemented; second, it avoids the need for extensive examples of 
normal behaviour to be captured, since only the misuse cases will be 
used for training. 

• Anomaly detection. As above, but trained in the conventional manner, 
on examples believed to represent normal behaviour. 

• Data mining. In addition to conventional data mining techniques, an 
approach has been developed that clusters the output of one or more 
detectors in order to identify groups of subscribers exhibiting similar 
behaviours. This is described in more detail in Section 1.6.4. 

• Generalisation. The use of neural networks as the underlying profiling 
technique allows the generalisation from learnt behaviours to unseen 
behaviours. 

General features of the approach, include: 

• No specific domain knowledge is assumed, nor are any particular 
characteristics of the data (e.g. no assumptions concerning 
distributions). 
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• Neural network profiler extracts the ‘essence’ of the calling behaviours 
from the descriptive features, which in turn are derived from the 
CDRs. 

• Detects deviations from learned behaviours – the learned behaviours 
may represent either normal or abnormal usage, i.e. anomaly detection 
or misuse detection. 

• Produces a continuous output that can be thresholded to generate 
alarms of varying severity, or used to prioritise investigations. 

• Output represents changes in subscriber behaviour that may be 
indicative of fraudulent usage or changes in normal calling patterns. 

• Potential to detect both known and unknown frauds. 

1.4.31.4.31.4.31.4.3 Feasibility studyFeasibility studyFeasibility studyFeasibility study    

As highlighted, above, work within the MDS domain suffers from a lack of 
well understood and pre-classified data samples. Further, due to the 
timescales involved in the operator providing the 500 subscriber set used for 
verification of the approach, a generic technique was needed, which had to 
be developed without knowledge of the specific properties of the domain. 
Fortunately, the problem of anomaly detection is fairly generic in nature: 
given a set of normal feature vectors, is it possible to extract an underlying 
model that sufficiently reflects the essence of those features, such that 
abnormal feature vectors may be detected (where abnormal is defined as 
being something markedly different from the normal sample, rather than 
specifically fraud). 

A wide variety of test data can be found to support such work, either based 
on corpora from other domains, or data which has been synthesised by 
random sampling from various probability distributions. Here, the 
functionality of the AI approach is illustrated using random profiles 
generated from normal probability distributions1, according to the 
specifications in Table 1 and Table 2. Three data sets are defined: 

a. Training set. The only data used within the evolutionary learning 
process. 

b. Control set. Data of similar nature to training set, used to verify that 
the detector has been properly trained. 

c. Test set. Representing data with different properties that the training 
and control sets. 

                                       

1 It is not suggested that normal probability distributions do, in fact, reflect the real 
distributions of telecommunications data. In reality, one would expect a Poisson process to 
be a reasonable model of individual events, and, thus, an Erlang distribution (equivalent to 
a Gamma distribution with integer values of the shape parameter) to be a reasonable model 
of the distribution of call frequency and call duration. However, since this section is not 
concerned with the nature of the distributions within the application domain, but in the 
principle of anomaly detection using evolutionary-neural computing techniques, this is 
considered a reasonable approach for an initial feasibility study. 
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The data sets each comprise six attributes, similar in nature to some of the 
features expected to be extracted from CDR logs, and are considered 
reasonable for profiling different subscriber behaviours (as described in the 
literature). As can be seen from the tables, the properties of the test set differ 
markedly from that of the training and control sets. If the technique is 
functioning as an effective anomaly detector, one would expect the following 
behaviour: 

a. Low values of deviation on the training set. Such deviations reflect the 
variation present within the training data and the extent to which the 
underlying model can accurately predict the expected output. 

b. Similarly low values of deviation on the control set. In this case, 
identical distributions are used, so the similarity should be clear. In 
practice, there may be more variability in the input data, so further 
deviation may be expected. 

c. Markedly higher values of deviation on the test set. This is generated 
from distributions that are clearly different from the training set, and, 
hence, should appear to be distinguishable as anomalous. 

This is simple test of the approach, and one might question why it is 
important. The point is that only the assumed normal data from the training 
set is used during the learning process. For the AI engine to work as an 
effective anomaly detector, it needs to be capable of extracting the essence of 
this normal data, and, thus, be able to recognise data drawn from different 
distributions as deviations from normal. The output of the AI engine is 
illustrated in Figure 3. As can be seen, the output on the training set, 
although not showing zero deviation (reflecting the natural variation within 
the data), is low, and the control set shows the required similar behaviour. 
The test set is clearly showing up as markedly different from the learned 
norms. A simple threshold may be set to differentiate between normal and 
abnormal data. The threshold may be determined by considering the peak 
deviation on the training data and allowing some additional margin. 

 

Attribute Type Mean Std. Dev. 

# calls Integer 40 10 
Average call duration Real 10 3 
Ratio of weekday calls to total calls Real 0.75 0.1 
Ratio of calls during working hours to total calls Real 0.9 0.05 
# destinations Integer 25 10 
# base stations Integer 6 2 

Table 1. Attributes and distribution parameters for training and control 
data sets. 
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Attribute Type Mean Std. Dev. 

# calls Integer 100 20 
Average call duration Real 30 10 
Ratio of weekday calls to total calls Real 0.5 0.2 
Ratio of calls during working hours to total calls Real 0.5 0.2 
# destinations Integer 50 10 
# base stations Integer 20 5 

Table 2. Attributes and distribution parameters for test data set. 
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Figure 3. Output of the AI engine for the three synthesised data sets. 

1.51.51.51.5 CDR data samplesCDR data samplesCDR data samplesCDR data samples    

Call Detail Records (CDRs) may contain a variety of information. Those 
provided by the operator include the following fields: 

• Phone number 

• Other party phone number 

• Direction (to network, from network, forwarded) 

• Call start date 

• Completion status (completed, dropped) 

• IPS user label (base station) 

• Third party phone number 

• Call duration 
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CDRs for 500 subscribers, collected over a one year period, were provided by 
the operator for the analysis and prototyping of the FD/BP module. Since a 
single call does not carry much information about overall subscriber 
behaviour, it is difficult to assess whether a given call represents a misuse or 
other behaviour of interest. Hence, there is a need to establish ‘profiles’ of 
subscriber behaviour. Thus, features are derived from a set of CDRs, which 
are more appropriate for representing calling behaviour over a period of time. 
In the prototype system, this period has been set to one week. It was 
confirmed by the operator that weekly responses would be adequate. A 
weekly period has the benefit of eliminating challenges due to variations 
caused by, for example, markedly different calling behaviours on weekdays 
and at the weekend. However, the assumption of weekly periods has not 
been built into the AI engine, and shorter periods may be adopted if needed 
(although, it might then be better to treat weekend and weekday profiles 
separately). A further advantage of considering whole weeks is that there is 
generally sufficient usage to enable a profile to be built. Typical usage is 
approximately 33 calls per week, whereas this would amount to a small 
number of calls per day, and a high degree of variability (noise) in, for 
example, daily profiles. 

1.5.11.5.11.5.11.5.1 FeaturesFeaturesFeaturesFeatures    

From each (nominally weekly) set of CDRs, a set of derived features, which 
are potentially useful for building a profile of subscriber behaviour are 
produced. Four general classes of feature are defined: 

a. Volume. Information related to the number and duration of calls. 

b. Temporal. Information related to times of the day and days of the week 
when calls were made or received. 

c. Destination. Statistics about the destinations accessed. 

d. Location. Statistics about the base stations used. 

The feature set comprises: 

• Call duration statistics 

o Total number, total duration, mean, median, standard deviation, 
inter-quartile range 

o Duration histogram with bins: 

� < 5S 

� 5-10S 

� 10-60S 

� 1-5M 

� 5-10M 

� 10-30M 

� 30-60M 

� >60M 
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• Calls completed and calls dropped 

• Daily counts 

o Calls in each of 24 bins for each hour of each day 

o Calls during daytime (8:00-17:00), evening (17:00-0:00), and 
night (0:00-8:00) 

• Weekly call counts, as per daily call counts, aggregated per week 

• Weekend counts and weekday counts 

• Base stations 

o Total used during week 

o Histogram of 10 most frequently used 

• Destinations 

o Total number of destinations 

o Histogram of 10 most frequently used 

Note that all features are replicated for all calls, incoming calls, outgoing 
calls and forwarded calls. By capturing information pertaining to call 
volumes, destinations, mobility, etc., these features allow discrimination of 
various subscriber behavioural patterns. The selected AI approach is flexible 
and would allow the addition of further features derived from the CDRs. 

1.5.21.5.21.5.21.5.2 PropertiesPropertiesPropertiesProperties    

Initial investigation of the data set focussed on various visualisations of 
properties such as call volume, destination distribution and base station 
distribution. Through this process, it was discovered that, from the total 500 
subscribers in the data set provided by the operator, the last (in terms of the 
order in which the subscriber first appears in the source files) 200 or so, 
appear to contain extreme behaviours, buried within other seemingly normal 
behaviour. The operator verified that these were indicative of a particular 
class of fraud (FCT). This is illustrated clearly in the bubble plot of Figure 4. 
This particular plot illustrates call frequency, but call duration also shows 
similar anomalies. Taking this information, it was possible to explore which 
features reflected the fraudulent usage. Many plots were generated between 
pairs of features, for various parts of the data set. This is illustrated in 
Figure 5, where the supposed normal portion of the data set (the first 300 
subscribers) and the supposed abnormal portion of the data set (the last 200 
subscribers) are distinguished by colour: blue for normal, red for abnormal. 
This figure examines call durations, call counts, destination numbers, 
weekday and weekend calls, and base stations used. The interesting points 
to note are: 

a. That the anomalous behaviour is indicated across numerous features, 
and therefore detection involving a range of features may be more 
reliable in terms of enhancing class separation. The current rule based 
approach for detecting FCT fraud considers call volume measures 
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only. Here it is seen that the distribution of destination numbers and 
the mobility are also strong indicators. 

b. There is an overlap between the normal and abnormal data, since (as 
seen in the bubble plot) the 200 subscribers within which the 
fraudulent behaviour is buried, contain many weeks of otherwise 
normal looking behaviour. 

c. In general, the FCT fraud is characterised by a combination of higher 
call counts, longer calls, more even distribution of calls throughout the 
week, and less mobility. 

d. Such analysis may be useful, not just for developing AI solutions, but 
for improving rule based approaches, by highlighting the potential for 
combining (probably fuzzy) rules related to a number of attributes, 
rather than just call volume. 
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Figure 4. Bubble plot showing call frequency per subscriber per week. 
Note the many blank weeks, particularly in the latter half. 
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(a) Call duration versus call count (b) Destination number versus call count 
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(c) Weekday versus weekend call count (d) Base stations versus call count 

Figure 5. Scatter plots of various feature pairs. Blue points refer to the 
supposed normal data. Red points refer to data with hidden fraud 
cases. 
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1.5.31.5.31.5.31.5.3 Data analysisData analysisData analysisData analysis    

In this section, a summary of some of the statistical properties of the CDR 
data is provided. Figure 4 illustrates the call frequency within the 500 
subscriber data set provided by the operator. The clear extreme behaviour 
corresponds to the ‘hidden’ cases of FCT fraud. The statistical properties 
reported here are taken from the first 250 subscribers, and are therefore 
considered a reasonable representation of normal behaviour. The records of 
the 250 subscribers, over a 52 week period, comprised 428876 individual 
CDRs, and, hence, an average of approximately 33 calls per subscriber per 
week. An understanding of the underlying properties of the data is useful, 
particularly in terms of synthesising test data. Hence, this analysis is 
presented largely from the perspective of characterising assumed normal 
behaviour, to support such synthesis, where it might be required during the 
testing and evaluation phase of the project. 

When statistics are collected for CDRs in timescales of less than one week, it 
is not clear whether the activity is consistent with a more long term 
customer profile, i.e. the statistics may not follow the global distribution. In 
particular, there is some difficulty in resolving the potential differences in 
calling behaviours on weekdays versus weekends, and this may well require 
two sets of statistics, or different statistics for different groups of 
subscribers. Hence, to avoid such concerns, features are considered over one 
week periods. From the raw data, an aggregated set of records was produced 
that represented weekly call activity for each customer. A total of seven 
weeks that had zero calling activity were removed, affecting five subscribers. 

1.5.3.11.5.3.11.5.3.11.5.3.1 VolumeVolumeVolumeVolume    

This section considers features pertaining to call volume. The first issue to 
be considered is that of modelling the total call counts, and their division 
into sent and received calls. Figure 6 shows a scatter plot of sent versus 
received call counts. 
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Figure 6. Scatter plot of counts of sent calls versus received calls. 

Visual inspection does not suggest an obvious correlation between these 
attributes, which have a correlation coefficient of 0.4663. There do appear to 
be some distinct patterns of behaviour within the data set, with, for example, 
a subset of records that show a large number of received calls but relatively 
few sent calls. There is not, however, any reasonable basis for the removal of 
these points from the data set. It is assumed, therefore, that no direct 
relationship exists between the number of calls sent and those received. 

Thus, for synthesis, a simplified approach is possible, which aims to 
maintain an approximately constant ratio of sent and received calls. This 
ratio is obtained from the raw data and is represented as the ratio of the 
means. The mean number of calls sent is 14.27 and the mean number of 
calls received is 19.68, that is, 57% and 43% respectively. The actual 
distribution of sent and received call counts is illustrated in Figure 7 and 
Figure 8, for sent and received calls respectively. 
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Figure 7. Distribution of calls sent. 

 

Figure 8. Distribution of calls received. 

The histograms of Figure 7 and Figure 8 are modelled here using a Gamma 
distribution. Not only is this a reasonable fit to the data, but, typically, 
events in communications systems are modelled by a Poisson process, and 
hence the distributions are appropriately modelled by a Gamma distribution 
(or, alternatively by an Erlang distribution, which has been used to model 
traffic load in telecommunications systems, and is a special case of the 

Gamma distribution, with integer values of the shape parameter, α). The 
Gamma distribution can model highly kurtotic distributions and follows 
exponential decays either side of a maximum. A random variable has a 
Gamma distribution if the probability density function is given by: 
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Thus, certain calling behaviours may be characterised by the two parameters 

α and β. The gamma distributions are overlaid on the histograms. For sent 

calls, the parameters are α = 0.0697 and β = 1.0750, and for received calls α 
= 0.0523 and β = 0.9890. Having modelled the counts, the duration must 
then be considered, with again attention to the possibility of correlations 
between attributes. Figure 9 illustrates the duration of calls sent versus calls 
received. 

 

Figure 9. Sent and received call duration. 

Visual inspection does not suggest any correlation between sent and received 
call durations, and this is supported by a correlation coefficient of 0.1748, 
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and they can, therefore, be considered independently. The histograms for 
sent and received call durations are provided in Figure 10 and Figure 11, 
respectively. 

 

 

Figure 10. Distribution of call duration for sent calls. 

 

Figure 11. Distribution of call duration for received calls. 

For sent calls, the parameters are α = 0.0234 and β = 2.0180, and for 
received calls α = 0.0233 and β = 1.7558. 

1.5.3.21.5.3.21.5.3.21.5.3.2 TemporalTemporalTemporalTemporal    

With the total call count, and sent and received call distributions, 
established, the next concern in terms of the synthesis of representative data 
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is to establish an appropriate distribution of these calls over the time of the 
day, and the split between weekend and weekday. This is achieved by 
establishing appropriate ratios into which the calls may be divided. Figure 
12 shows the distribution of sent and received calls by time of day, with 
hourly bins. 

 

Figure 12. Distribution of calls by time of day. 

Rather than model this somewhat complex distribution, a simplified 
approach, and one that is in line with existing research, is to divide the day 
into three periods and count the calls in each (daytime, evening and night), 
and to consider the split between weekend and weekday calls. The average 
call counts and the proportion of calls within each daily period are given in 
Table 3, and for weekend and weekdays in Table 4. 

 

 night 
(0:00 – 8:00) 

daytime 
(8:00 – 17:00) 

evening 
(17:00 – 0:00) 

Average number sent 1.274 8.922 4.079 
Average number received 1.859 11.970 5.851 
Proportion sent 0.09 0.63 0.28 
Proportion received 0.09 0.61 0.30 

Table 3. Call counts and proportions within each daily period. 

 weekday weekend 

Average number sent 9.75 4.524 
Average number received 13.437 6.243 
Proportion sent 0.68 0.32 
Proportion received 0.68 0.32 

Table 4. Call counts and proportions between weekdays and weekend. 
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1.5.3.31.5.3.31.5.3.31.5.3.3 DestinationsDestinationsDestinationsDestinations    

Figure 13 and Figure 14 show the number of different destinations against 
the number of calls, for sent and received calls, respectively. 

 

Figure 13. Distribution of destinations for sent calls. 
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Figure 14. Distribution of destinations for received calls. 

Visual inspection reveals a highly suggestive relationship between the count 
and destination variables, which is supported by a correlation coefficient of 
0.880 for send calls, and 0.926 for received calls. A linear regression for calls 
sent produces 

9299.04049.0 += sentsent CD  

and for calls received 

2746.04488.0 −= recvrecv CD  

where Dsent and Drecv  are the dependent variables for sent and received call 
destinations, and Crecv and Csent are the independent variables for counts of 
sent and received calls. 

Given that it is possible to estimate the calls received and sent from the 
linear model, with a noise factor related to the residual value, the problem, 
in terms of synthesising representative data, is to distribute the calls over 
the destination frequency bins. Figure 15 shows the distribution of the 
average number of calls across 10 destination bins, from the most frequently 
used to the least frequently used. This takes no account of the number of 
different destinations. 
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Figure 15. Calls versus destinations. 

The average subscriber will receive approximately six calls from the most 
common destination but send only five calls to the most common 
destination. Note that these destinations are not necessarily the same. The 
problem with distributing the call count over the derived destinations is that 
the above distribution assumes that ten different destinations have been 
accessed. What is needed is a distribution for each possible value of the 
destination count greater than one. The appropriate averages can be 
extracted from the data, as presented in Table 5, with the associated 
standard deviations in Table 6, where the columns refer to the number of 
different destinations and the rows give the corresponding values extracted 
from the raw data set. 

 

10 9 8 7 6 5 4 3 2 

6.50 5.81 5.79 5.64 5.02 4.77 4.29 3.96 2.92 
3.71 3.12 3.16 2.82 2.52 2.23 1.94 1.75 1.29 
2.52 2.19 2.12 1.88 1.64 1.41 1.26 1.11 
1.84 1.62 1.52 1.40 1.25 1.10 1.04 
1.47 1.31 1.22 1.12 1.06 1.01 
1.22 1.12 1.07 1.03 1.00 
1.08 1.04 1.01 1.00 
1.03 1.01 1.00 
1.01 1.00 
1.00 

Table 5. Mean number of calls to different destinations. 
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10 9 8 7 6 5 4 3 2 

4.51 3.89 4.01 4.01 4.09 4.13 3.95 3.95 2.76 
2.23 1.68 1.80 1.68 1.70 1.48 1.32 1.29 0.79 
1.38 1.09 1.14 1.11 1.02 0.72 0.60 0.40 
0.82 0.80 0.77 0.66 0.64 0.35 0.24 
0.64 0.58 0.49 0.36 0.25 0.14 
0.48 0.34 0.29 0.18 0.07 
0.29 0.20 0.12 0.07 
0.18 0.09 0.04 
0.10 0.05 
0.05 

Table 6. Standard deviations of calls to different destinations. 

Note the relatively high values for the standard deviations. For synthesis of 
representative data, noise should be introduced to the process of call 
distribution (e.g. by assuming that values are normally distributed around 
the means). Without such noise the destination attributes are determined by 
a functional relationship derived from the means. For the purpose of 
distributing actual call numbers across these destinations it is more helpful 
to have the values normalised, as provided in Table 7. 

 

10 9 8 7 6 5 4 3 2 

0.30 0.32 0.34 0.37 0.41 0.46 0.50 0.58 0.69 
0.17 0.17 0.19 0.19 0.20 0.21 0.23 0.26 0.31 
0.12 0.13 0.13 0.13 0.13 0.13 0.15 0.16 
0.09 0.10 0.09 0.09 0.10 0.10 0.12 
0.07 0.07 0.07 0.08 0.08 0.10 
0.06 0.06 0.06 0.07 0.08 
0.05 0.05 0.06 0.07 
0.05 0.05 0.06 
0.05 0.05 
0.04 

Table 7. Normalised distribution of calls to different destinations. 

1.5.3.41.5.3.41.5.3.41.5.3.4 LocationsLocationsLocationsLocations    

The treatment of locations follows the same approach as for destinations. 
Figure 16 and Figure 17 illustrate the number of calls sent and received, 
respectively, against the number of different locations. Figure 18 shows the 
distribution of the average number of calls across the 10 location bins, from 
the most frequently used the least frequently used. This takes no account of 
the number of different locations. 
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Figure 16. Distribution of locations for sent calls. 

 

Figure 17. Distribution of locations for received calls. 



 32 

Visual inspection suggests that there may be a correlation between calls and 
locations, particularly for received calls, but this is not as convincing as for 
destinations, with correlation coefficients of 0.771 and 0.492 for sent and 
received calls, respectively. The plot of received calls suggests some distinct 
behaviours, which might be indicative of the inclusion of some abnormal 
calling behaviours in the data set, and thus impact on an otherwise 
reasonably high correlation. 

A linear regression for calls sent produces 

3167.12732.0 += sentsent CL  

and for calls received 

5633.30966.0 −= recvrecv CL  

where Lsent and Lrecv are the dependent variables for received and sent call 
locations, and Crecv and Csent are as before. 

 

Figure 18. Distribution of calls to locations. 

As before, a distribution is needed for each possible value of the location 
count greater than one. The appropriate averages can be extracted from the 
data, as presented in Table 8, with the associated standard deviations in 
Table 9, where the columns refer to the number of different locations and the 
rows give the corresponding values extracted from the raw data set. 
Normalised distributions are presented in Table 10. 
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10 9 8 7 6 5 4 3 2 

10.09 10.26 9.41 9.06 8.25 7.58 6.73 5.72 4.51 
4.93 4.60 4.71 4.23 3.82 3.32 2.70 2.05 1.51 
2.79 2.64 2.51 2.30 2.07 1.80 1.49 1.17 
1.90 1.74 1.72 1.56 1.40 1.25 1.10 
1.40 1.32 1.24 1.24 1.11 1.03 
1.12 1.14 1.07 1.06 1.02 
1.03 1.05 1.02 1.00 
1.01 1.01 1.00 
1.00 1.00 
1.00 

Table 8. Mean number of calls to different locations. 

10 9 8 7 6 5 4 3 2 

8.87 9.90 8.04 7.98 7.80 7.92 6.51 6.01 4.44 
4.38 4.58 5.05 4.24 4.34 3.35 2.79 1.84 1.27 
1.68 1.96 1.94 1.94 1.74 1.53 1.03 0.54 
1.21 1.04 1.46 0.99 0.91 0.73 0.42 
0.68 0.65 0.57 0.61 0.42 0.17 
0.37 0.40 0.29 0.27 0.16 
0.17 0.21 0.15 0.06 
0.12 0.11 0.07 
0.00 0.00 
0.00 

Table 9. Standard deviations of calls to different locations. 

10 9 8 7 6 5 4 3 2 

0.38 0.41 0.41 0.44 0.47 0.51 0.56 0.64 0.75 
0.19 0.19 0.21 0.21 0.22 0.22 0.22 0.23 0.25 
0.11 0.11 0.11 0.11 0.12 0.12 0.13 0.13 
0.07 0.07 0.08 0.08 0.08 0.08 0.09 
0.05 0.05 0.06 0.06 0.06 0.07 
0.04 0.05 0.05 0.05 0.05 
0.04 0.04 0.04 0.05 
0.04 0.04 0.04 
0.04 0.04 
0.04 

Table 10. Normalised distribution of calls to different locations. 

1.5.3.51.5.3.51.5.3.51.5.3.5 SynthesisSynthesisSynthesisSynthesising ing ing ing Call Detail RecordsCall Detail RecordsCall Detail RecordsCall Detail Records    

The preceding statistical analysis, of the calling data provided by the 
operator, provides insight into subscriber behaviour, and also facilitates the 
synthesis of representative test data. The general process for synthesising 
feature vectors for training or evaluation is outlined below (where sent and 
received calls are treated separately).  

a. Total count. Use the Gamma distributions to generate as many sent 
and received calls as needed, where the ratio of sent to received should 
be approximately 57% received and 43% sent. 

b. Call duration. Use the number of calls sent and the Gamma 
distributions to generate call duration values. 
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c. Distribution over the week. Using the ratios specified, allocate the call 
counts to a weekend or a weekday. At this point, noise can be added 
by distributing the allocation normally around the specified means, 
ensuring that the total adds up to the number of calls. 

d. Distribute over the day. Distribute calls over the three daily time 
periods using the derived ratios, in a similar way to the previous step 
for allocating to weekend or weekday. 

e. Destinations. Use the linear relationship to calculate the number of 
different destinations, introducing appropriate levels of noise. 
Distribute the call count according to the ratios from the relevant 
column of the destination table. Again, noise can be introduced, but 
ensuring that the total call count remains constant. 

f. Locations. Treat locations in the same way as destinations. 

1.61.61.61.6 Prototype module Prototype module Prototype module Prototype module and early and early and early and early findingsfindingsfindingsfindings    

This section outlines the findings of work on the prototype system that has 
informed the design of the AI module. Whilst extensive informal exploratory 
work has been carried out, the focus here is on examples that demonstrate 
proof-of-concept. 

1.6.11.6.11.6.11.6.1 Data preparationData preparationData preparationData preparation    

The data set, as depicted in Figure 4, was divided into three sub-sets (as per 
the feasibility study reported in Section 1.4.3): 

d. Training set. Comprising the first 150 subscribers, representing 
assumed normal behaviour. The only data used within the 
evolutionary learning process. 

e. Control set. Comprising the next 150 subscribers, representing 
assumed normal behaviour, used to verify that the detector has been 
properly trained. 

f. Test set. Comprising the final 200 subscribers, represent data with 
instances of fraud hidden within other seemingly normal data. 

The raw CDR file was processed to extract a feature vector for each 
subscriber for each week of activity. Weeks with zero activity were removed. 
From the 1024 features, the following feature sub-set was then selected 
(based on the literatures and research findings) for the results reported 
herein: 

Description # attributes 

Descriptive statistics for incoming calls 6 
Descriptive statistics for outgoing calls 6 
Duration histogram with 8 bins 8 
Calls during day, evening, and night slots 3 
Total base stations used and histogram of 10 most active  11 
Total destinations and histogram of 10 most used 11 

Table 11. Selected features. 
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Values for each attribute were rescaled to the range [0, 1] based on the 
extreme values of the training set. 

1.6.21.6.21.6.21.6.2 TrainingTrainingTrainingTraining    

The prototype provides an evolutionary learning approach that, for given 
training data, attempts to develop a detector that shows minimal profile 
deviations – one training run results in one detector. Figure 19 illustrates 
how the training process minimises the mean  (dimensionless) outputs of the 
network on the training data (the black trace). As one would hope to see, the 
control set (supposed normal) shows only marginally higher deviations than 
one the training set. However, the test set, which contains the hidden fraud 
cases, shows markedly higher deviations. The training traces show the 
exponential convergence typically of evolutionary algorithms. In theory, one 
might expect the difference between training and control sets to begin to 
diverge at some point, as the neural network effectively memorises the 
training data. However, this over fitting has not been observed in any 
training sessions thus far. 

 

 

Figure 19. Screenshot from the prototype system, showing profile 
deviations developing during training. 

1.6.31.6.31.6.31.6.3 Misuse indicationsMisuse indicationsMisuse indicationsMisuse indications    

In addition to training traces, the prototype also provides the individuals 
errors per subscriber per week. This is the raw (dimensionless) output of the 
profiler. Figure 20 shows the output for the sample CDR data (partially 
trained, as per Figure 19). Important points to note include: 

a. The output of the training and control sets are remarkably similar. 

b. The peak outputs of the training and control sets are almost identical. 
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c. The peak output on the training set can be recorded, and a small 
margin added (e.g. 10%) above which alarms can be generated. 

d. The test set shows some extreme deviations from the normal data, 
giving very clear indications of possible frauds. 

e. The output is continuous, and, hence, may be used to prioritise 
investigations or to generate multiple alarms, each of varying severity. 

f. The 30 most anomalous indications have been verified by the operator 
as examples of fraud. 

 

 

Figure 20. Screenshot from the prototype system, showing deviations 
developing during training. Only the black trace is used for training. 
The blue trace represents the control set and the red trace the test set, 

the latter containing clearly identifiable fraud indications. 

1.6.41.6.41.6.41.6.4 MiningMiningMiningMining    

One training cycle results in one trained detector. However, training data 
may be broken down by various characteristics (e.g. call duration, 
destinations, or mobility), and ‘specialised’ detectors trained. Each detector 
has different characteristics, and can be used to identify similar examples 
from a larger (test) set. Training detectors on different characteristics allows 
differentiation between subscribers exhibiting fundamentally different calling 
behaviours. In a sense, it is not critical what the detectors are trained on, as 
long as they provide different ‘views’ of the data. 

The trained detectors may be readily applied to larger sets of records and the 
outputs (deviations) from each detector recorded. These raw (dimensionless) 
outputs may then be analysed to identify groups of subscribers having 
similar calling behaviours. Such analysis may be accomplished using 
clustering approaches such as x-means. The mining reveals distinct 
subscriber groups, and, hence, may be of benefit to the operator’s business 
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processes, for example, by enabling targeting of services. Additionally, noting 
the lack of homogeneity of the training data in Figure 20, it is clear that 
improved differentiation between normal and abnormal behaviour may be 
achieved by selecting training data from individual clusters. Further, this 
enables specialised detectors to be deployed, without requiring individual 
detectors for each subscriber. 

The result of mining the supposed normal portion of the CDR samples (using 
the Weka data mining tool for x-means clustering), is illustrated in Figure 
21. In this case, five clusters have been identified. Profiling, combined with 
visualisation and clustering tools offers deeper insight into calling patterns 
than is currently possible, and is a novel contribution to the MDS project. 

 

 

Figure 21. Graphical output from x-means clustering on outputs from 
two detectors trained on different subsets of the data (normal data 
only). Five clusters are identified, each denoted by a different colour in 

the plot. 

1.6.51.6.51.6.51.6.5 SummarySummarySummarySummary    

This section has illustrated some of the research findings from the analysis 
phase and prototype development. On the data provided by the operator, it 
has been verified that the selected approach is capable of detecting the class 
of fraud hidden within this data. The technique is able to profile a given set 
of CDRs based on summative features, and may thus be adopted for 
anomaly detection (training on supposed normal behaviour) as well as 
misuse detection (training on examples on a given misuse class). A novel 
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approach to the mining of CDRs has been developed based on multiple 
detectors trained on arbitrary but different subsets of samples, with 
subscriber groups being identified using x-means clustering. The use of a 
neural approach assures that some degree of generalisation is achieved. 
Hence, the recommendations outlined in Section 1.3.5 have been satisfied. 

1.71.71.71.7 System contextSystem contextSystem contextSystem context    

This section describes the context of the FD/BP module, and its relationship 
to other parts of the MDS. 

1.7.11.7.11.7.11.7.1 FD/BP module subFD/BP module subFD/BP module subFD/BP module sub----systemssystemssystemssystems    

Since the selected AI techniques require training prior to deployment, the 
FD/BP module requires two subsystems: detector training (DT) and online 
detection (OD). The data mining process is supported by one or more trained 
detectors, as well as one or more open source data mining tools (such as 
Weka). 

1.7.21.7.21.7.21.7.2 Detector training subDetector training subDetector training subDetector training sub----systemsystemsystemsystem    

A context diagram for the detector training (DT) sub-system is provided in 
Figure 22. The purpose of this sub-system is to create a computational 
machine (referred to as a detector) capable of recognising a usage profile 
based on examples. Training is based on building a profile of behaviour over 
a number of defined intervals, where each interval comprises zero or more 
individual call records for one or more users, selected from a Historical Data 
Source. Input data may be selected, by a domain expert, directly from 
available CDRs, or may be selected based on information provided by the 
data mining process. The training process is the same, in either case. The AI 
engine ‘learns’ the ‘essence’ of user behaviour during these periods, and 
develops a detector that is capable of offering an indication of variation from 
the learned behaviour. The result of training is a detector that can be 
deployed to process online data to indicate the extent of variation in 
behaviours between those present in the training set and those present in 
the online data. The Configurator provides (via a configuration file) values for 
any configuration parameters, although the module is largely pre-configured 
prior to delivery. For training, configuration will include the maximum 
number of training cycles to execute, a target error value, and the desired 
feedback period. Further configuration parameters may become evident 
during the implementation phase. The training cycle is controlled via the 
Training Interface, which receives periodic feedback from the sub-system, 
indicating training cycles executed and current error values. On completion 
of the training cycle, a trained detector is written to the Knowledge 
Repository. 

 



 39 

 

Figure 22. Context for the detector training sub-system. 

1.7.31.7.31.7.31.7.3 Online detection subOnline detection subOnline detection subOnline detection sub----systemsystemsystemsystem    

A context diagram for the online detection (OD) sub-system is provided in 
Figure 23. This sub-system is concerned with the deployment of one or more 
previously trained detectors. Trained detectors are loaded from the 
Knowledge Repository. The Configurator provides (via a configuration file) 
values for any configuration parameters. One or more detectors can be 
loaded and applied to sets of CDRs from the Online Data Source. The loaded 
detectors are capable of raising alarms on the occurrence of either a match 
or mismatch between the learned behaviours and those present in the online 
data (i.e. anomaly detection or misuse detection). Multiple detectors may be 
applied simultaneously, to characterise incoming data in different ways, 
such as for different classes of fraud. Detection is controlled via the 
Monitoring Interface, which then receives any alarm indications or 
notification of any errors occurring during processing. 
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Figure 23. Context for the online detection sub-system. 
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1.7.41.7.41.7.41.7.4 Data miningData miningData miningData mining    

CDRs may be visualised and analysed using a variety of data mining 
techniques, and thereby identify patterns that exist within the data. These 
patterns are identified through unsupervised learning techniques (such as 
cluster analysis) and, therefore, may or may not be of interest in the areas of 
FD and BP. However, patterns may be found that, when examined by 
domain experts, can be identified as either behaviours of interest to the 
operator’s business processes or cases of fraudulent usage of the network. 
Data mining may, therefore, be an end in itself. Additionally, it may be 
deployed to filter unlabelled data (that is, data of unknown properties) in 
order to identify cases of interest for learning. 

The FD/BP module will not provide bespoke data mining tools. Instead, 
these will be provided by open source toolsets, such as Weka. However, the 
detector training and online detection sub-systems can be used to facilitate 
the novel mining approach described in 1.6.4. A number of pre-trained 
detectors will be provided to support the mining process. Each will be 
trained on a subset of the sample data provided by the operator, with each 
subset being selected on the basis of different derived features so that the 
behavioural patterns learned by each detector are different. The online 
detection module can then be used to extract measures of deviation across a 
large data set. A procedure will be specified for clustering these measures, 
using the Weka toolset. 

1.7.51.7.51.7.51.7.5 Relationship with other MDS subRelationship with other MDS subRelationship with other MDS subRelationship with other MDS sub----systemssystemssystemssystems    

The relationship between the FD/BP AI module and the other MDS sub-
systems is depicted in Figure 24. Input CDRs are provided via the mediation 
layer. Output from the module, in terms of trained detectors, alarms, etc. is 
sent to the integration framework, with appropriate notifications from there 
to the DSm. Control and configuration, comes from the DSm, via the 
integration framework. The knowledge repository, which stores training data, 
configurations, and trained detectors, is implemented by the integration 
framework, and managed by the DSm. Translation of AI outputs to the 
Unified Data Format, is facilitated by the Data Unification Module. 

 

Figure 24. Relationship between the FD/BP AI module and other MDS 

sub-systems. 
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1.81.81.81.8 ModuleModuleModuleModule architecture architecture architecture architecture    

This section describes the specifics of the module design, in sufficient detail 
to facilitate integration with other components of the MDS. Internal 
processes, and algorithmic details, are not provided. Results from the 
prototype system, including verified fraud detection capability, demonstrate 
that the design of this aspect of the module is satisfactory. 

1.8.11.8.11.8.11.8.1 Component viewComponent viewComponent viewComponent view    

The detector training component is depicted in Figure 25, which highlights 
the provided and required interfaces. The detector training sub-system 
provides the following interfaces: 

• dt_config for configuring sub-system parameters. 

• dt_dataIn for establishing source of CDRs for training. 

• dt_detectorOut for establishing connection to external storage device 
for writing trained detectors. 

• dt_training for control of training process. 

The detector training sub-system requires the following interfaces: 

• dt_dataInNotify for accessing CDR records from external storage. 

• dt_detectorOutNotify for writing trained detectors to external storage 
device. 

 

 

Figure 25. Detector training component. 
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The online detection component is depicted in Figure 26, which highlights 
the provided and required interfaces. The online detection sub-system 
provides the following interfaces: 

• od_config for configuring sub-system parameters 

• od_dataIn for input of CDRs for online detection 

• od_detectorIn for loading and unloading of online detectors from 
external storage device 

• od_anomaly for establishing destination for notification of detected 
anomalies 

• od_detection for control of online detection process 

The online detection sub-system requires the following interfaces: 

• od_anomalyNotify for receiving anomaly indications 

• od_detectionNotify for receiving error indications during the detection 
process 

 

 

Figure 26. Online detection component. 

1.8.21.8.21.8.21.8.2 Application Programming Interface (API)Application Programming Interface (API)Application Programming Interface (API)Application Programming Interface (API)    

For performance reasons, the FD/BP module will be implemented in C++, 
with functionality exposed via a C API. Each sub-system is defined in terms 
of a number of ‘interfaces’. Required interfaces are signified by the use of 
function pointers. Function prototypes are outlined, below, whilst 
descriptions are provided within Section 1.8.7. This is a refinement of the 
specification provided in the requirements document (D2.4.1). 
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/* defined types */ 
 
typedef struct 
{ 
   int day; 
   int month; 
   int year; 
}TDate; 
 
typedef struct 
{ 
   int hour; 
   int minute; 
   int second; 
}TTime; 
 
typedef struct 
{ 
   char *pPhoneNumber1; 
   char *pPhoneNumber2; 
   char *pPhoneNumber3; 
   char *pMobileType; 
   char *pIPSUserLabel; 
   int   direction;          // 0 = to network, 1 = from network, 2 = 
forwarded 
   int   completionStatus;   // 0 = completed, 1 = dropped 
   TDate date; 
   TTime time; 
   int   duration;     
}TCallRecord; 
 
typedef enum 
{ 
   rc_success = 0, 
   // other values to be defined 
}TReturnCode; 
 
/* interface dt_config */ 
 
TReturnCode dt_config_loadConfig    (char *path); 
 
void dt_config_defaultConfig (void); 
 
/* interface dt_dataIn */ 
 
void dt_dataIn_setDataInput ( 
   int          (*dt_dataInNotify_getNumPeriods) (void                   ), 
   int          (*dt_dataInNotify_getNumRecords) (int period             ), 
   TCallRecord *(*dt_dataInNotify_getCallRecord) (int period,  int record), 
   void         (*dt_dataInNotify_free         ) (TCallRecord *callRecord) 
                            ); 
 
/* interface dt_detectorOut */ 
 
void dt_detectorOut_setWriter ( 
   void (*dt_detectorOutNotify_write) (char *pData, int size, double error) 
                              ); 
 
/* interface dt_training */ 
 



 44 

TReturnCode dt_training_run ( 
   void (*dt_trainingNotify_progress) (int epoch, double error) 
                            ); 
 
void dt_training_stop (void); 
 
/* interface od_config */ 
 
TReturnCode od_config_loadConfig (char *path); 
 
void od_config_defaultConfig (void); 
 
/* interface od_dataIn */ 
 
void od_dataIn_setDataInput ( 
   int          (*od_dataInNotify_getNumRecords) (void                   ), 
   TCallRecord *(*od_dataInNotify_getCallRecord) (int record             ), 
   void         (*od_dataInNotify_nextPeriod   ) (void                   ), 
   void         (*od_dataInNotify_free         ) (TCallRecord *callRecord) 
                            ); 
 
/* interface od_detectorIn */ 
 
TReturnCode od_detectorIn_loadDetector (char  *pDetector, 
                                        int    size, 
                                        int    uid, 
                                        int    detectionType, 
                                        double threshold); 
 
TReturnCode od_detectorIn_unloadDetector (uid); 
 
/* interface od_anomaly */ 
 
void od_anomaly_setAnomalyNotify ( 
   void (*od_anomalyNotify_anomaly) (int     uid, 
                                     int     detectionType, 
                                     double  threshold, 
                                     double  actual, 
                                     char   *subscriber) 
                                 ); 
 
/* interface od_detection */ 
 
TReturnCode od_detection_run ( 
   void (*od_detectionNotify_error) (TReturnCode error) 
                             ); 
 
void od_detection_stop (void); 

 

1.8.31.8.31.8.31.8.3 Detector training componentDetector training componentDetector training componentDetector training component    

The principal elements of the detector training component are illustrated in 
Figure 27. The responsibilities of the individual classes are defined, below. 

a. TrainingManager. Responsible for the configuration of the evolutionary 
learning engine and the control of the training process. This class 
interacts with the integration framework via the dt_config and 
dt_training interfaces. 
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b. EvolutionaryLearningEngine. Responsible for training detectors to 
profile the features extracted from the input CDRs. Implements an 
evolutionary algorithm in order to create neural network based 
detectors. Interacts with the integration framework via the 
dt_detectorOut interface. 

c. Detector. Used to evaluate various combinations of neural network 
parameters developed by the evolutionary learning engine. 

d. DataReader. Reads raw CDR data provided by the mediation layer, via 
the dt_dataIn interface. CDRs are read into the CDRBuffer in 
preparation for feature extraction. 

e. CDRBuffer. Stores CDRs in preparation for feature extraction. Local 
storage of CDRs is necessary due to the multi-pass nature of the 
feature extraction process. 

f. FeatureExtractor. Extracts features from the raw CDR data, generating 
one feature vector for a given set of CDRs. Feature vectors are stored 
in the FeatureBuffer in preparation for training. 

g. FeatureBuffer. Stores extracted feature vectors to be used by the 
evolutionary learning engine for developing neural network based 
detectors. Local storage of extract features is necessary due to the 
multi-pass nature of the learning process. 

 

 

Figure 27. Decomposition of the detector training component. 

1.8.41.8.41.8.41.8.4 Online detection componentOnline detection componentOnline detection componentOnline detection component    

The principal elements of the online detection component are illustrated in 
Figure 28. The responsibilities of the individual classes are defined, below. 

a. DetectionManager. Responsible for the configuration of the execution 
engine and the control of the detection process. This class interacts 
with the integration framework via the od_config and od_detection 
interfaces. 

b. ExecutionEngine. Responsible for delivering extracted features to 
loaded detectors, and the thresholding of detector outputs in order to 



 46 

generate anomaly indications. Interacts with the integration 
framework via the dt_anomaly. 

c. DetectorManager. Manages the list of loaded detectors. Interacts with 
the integration framework via the od_detectorIn interface, through 
which detectors may be loaded and unloaded. 

d. Detector. Pre-trained neural network based profilers used to measure 
deviations between present features and those from the training data. 

e. DataReader. Reads raw CDR data provided by the mediation layer, via 
the dt_dataIn interface. CDRs are read into the CDRBuffer in 
preparation for feature extraction. 

f. CDRBuffer. Stores CDRs in preparation for feature extraction. Local 
storage of CDRs is necessary due to the multi-pass nature of the 
feature extraction process. 

g. FeatureExtractor. Extracts features from the raw CDR data, generating 
one feature vector for a given set of CDRs. Feature vectors are passed 
to the execution engine for anomaly/misue detection.  

h. FeatureBuffer. Stores extracted feature vectors to be used by the 
evolutionary learning engine for developing neural network based 
detectors. Local storage of extract features is necessary due to the 
multi-pass nature of the learning process. 

 

 

Figure 28. Decomposition of the online detection component. 
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1.8.51.8.51.8.51.8.5 BehaviouralBehaviouralBehaviouralBehavioural model model model modelssss    

This section describes the behaviour of the FD/BP sub-systems using Role 
Activity Diagrams (RADs). This represents effectively a refinement of the 
RADs from the requirements document, D2.4.1, to reflect design level 
concerns. For example, certain actions depicted within the roles at 
requirements time are implemented as interactions between specific 
component parts of the system (that is, internal system issues are now 
considered). During requirements this is not of interest; that is, the user is 
only concerned that such an action is possible, not how it comes about (e.g. 
clicking a button on the graphical user interface). At this stage, however, 
such interactions must be defined. A RAD offers a more flexible notation for 
such a model (being developed, originally, from Petri-nets), which cannot be 
easily represented using the behavioural models of the UML, such as 
statecharts, sequence diagrams, or activity diagrams. As the RAD notation 
may not be as familiar as those notations of the UML, Figure 29 provides an 
overview of the main constructs. These constructs are combined in a graph 
that represents effectively a state machine, although information flow can be 
readily reflected. The behavioural model is further enhanced by the 
description of ‘typical’ usage scenarios, in Section 1.8.6. 

 

 

Figure 29. Overview of notational elements of a Role Activity Diagram 
(RAD). 

The RADs highlight the internal behaviour of the sub-systems, in response 
to interactions with other parts of the MDS. It is not the intention to impose 
particular models on other parts of the MDS, however, the models do 
describe the correct form of interaction that the knowledge repository, 
mediation layer, decision support module (DSm), must supply in order to 
function properly with the AI modules. These can, therefore, be seen as 
necessary provisions, if not sufficient or complete. The following roles are 
modelled in both cases: 

a. Detector training / online detection sub-system. Encompasses all of 
the behaviour of the AI module. 
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b. Decision support module (via integration framework). Although the 
communications with the AI module are facilitated entirely by the 
integration framework, the behaviour is determined solely by the logic 
of the decision support module. 

c. Knowledge repository (integration framework). This role encapsulates 
the external (to the AI module) storage of, for example, trained 
detectors, training data, and other data required for running and 
maintaining the system. In practice, this module is an integral part of 
the integration framework. 

d. Mediation layer. The mediation layer supplies the input data (CDRs), 
although this may be via the integration framework. 

1.8.5.61.8.5.61.8.5.61.8.5.6 Detector trainingDetector trainingDetector trainingDetector training    

The RAD focussing on the detector training (DT) sub-system in shown in 
Figure 30. In this model, the mediation layer, as the input source for CDRs, 
and the knowledge repository, as the destination for trained detectors, are 
simply shown without particular regard to their internal models. The 
remainder of the model is devoted to the DT sub-system and the behaviours 
that its proper usage will imply on the DSm. Note that the DT sub-system is 
a passive role until training has started, when it becomes active. Similarly, 
the DSm role is active until training is started, when it then plays a largely 
passive role (except for the ability to stop training) in processing feedback 
from the DT sub-system. 

The upper part of both the DT and DSm models, encompassing the activities 
from the initial state until the ready is reached, are concerned with 
configuration. The structures within the DSm reflect the requirements of the 
DT API in terms of mandatory or optional configuration activities, and the 
order in which they may be performed. Since the structures are identical, 
here, we only describe the DT model. 

From the initial state there are three threads, signifying that the order in 
which configuration occurs is not relevant. The first thread concerns the 
loading of configuration files and/or restoration of the default configuration. 
There are three choices: to read and process a configuration file, to restore 
the default configuration, or take no action. Hence, this thread denotes the 
optional aspects of the configuration of the DT sub-system. The choice is 
defined by the interaction between the DSm (the active party) and DT sub-
system (the passive party). The second thread concerns establishing the 
connection to the source of CDRs, whilst the third thread concerns 
establishing the connection to the destination for trained detectors. Both are 
mandatory. Only once all three threads have completed (states configured, 
connected to input, and connected to output), does the system move to the 
ready state, from which training may commence. 

Training is initiated by the DSm, with the start training interaction. This 
results in two threads, in both the DSm and DT roles. The first caters for the 
possibility that the user might wish to stop training before the activity is 
complete. The stop training interaction, driven by the DSm, results in the 
stop requested state within the DT sub-system. The second thread within the 
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DT sub-system is actively engaged in training cycles. At the start of each 
training cycle, this thread checks the state to see if a stop has been received 
and if so, returns to the initial state. If not, then the thread proceeds to 
either send progress notifications to the DSm, at intervals determined by the 
selected configuration, or process the input data and train the detector. Data 
is read from the mediation layer under the control of the DT sub-system. On 
completion of the training cycle, the detector is written to the knowledge 
repository and the DT sub-system returns to the initial state. Once training 
is underway, one thread in the DSm responds to progress notifications from 
the DT sub-system. The response to such notifications is a concern for the 
DSm design, so not defined here. 
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Figure 30. Role Activity Diagram for the detector training sub-system. 
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1.8.5.71.8.5.71.8.5.71.8.5.7 Online detectionOnline detectionOnline detectionOnline detection    

The RAD focussing on the online detection (OD) sub-system in shown in 
Figure 31. In this model, the mediation layer, as the input source for CDRs, 
and the knowledge repository, as the source of trained detectors, are simply 
shown without particular regard to their internal models. The remainder of 
the model is devoted to the OD sub-system and the behaviours that its 
proper usage will imply on the DSm. Note that the OD sub-system is a 
passive role until detection has started, when it becomes active. Similarly, 
the DSm role is active until detection is started, when is then plays a 
somewhat mixed role, driving interactions related to the loading and unload 
of detectors, and stopping detection, but is otherwise responding to 
notifications from the OD sub-system. 

The upper part of both the OD and DSm models, encompassing the activities 
from the initial state until the ready is reached, are concerned with 
configuration. The structures within the DSm reflect the requirements of the 
OD API in terms of mandatory or optional configuration activities, and the 
order in which they may be performed. Since the structures are identical, 
here, we only describe the OD model. 

From the initial state there are three threads, signifying that the order in 
which configuration occurs is not relevant. The first thread concerns the 
loading of configuration files and/or restoration of the default configuration. 
There are three choices: to read and process a configuration file, to restore 
the default configuration, or take no action. Hence, this thread denotes the 
optional aspects of the configuration of the OD sub-system. The choice is 
defined by the interaction between the DSm (the active party) and OD sub-
system (the passive party). The second thread concerns establishing the 
connection to the source of CDRs, whilst the third thread concerns 
establishing the connection to the destination for trained detectors. Both are 
mandatory. Only once all three threads have completed (states configured, 
connected to input, and connected to output), does the system move to the 
ready state, from which detection may commence. 

In separate threads, in both the DSm and OD sub-systems, provision is 
made for the loading and unloading of previously trained detectors. The 
related thread within the DSm offers two choices, for either loading a 
detector or unloading a previously loaded detector. Loading involves an 
interaction with the knowledge repository, where trained detectors are 
stored. This, in turn, results in an interaction between the knowledge 
repository and the OD sub-system. Unloading involves an interaction 
between the DSm and the OD sub-system, directly. The knowledge 
repository is otherwise passive. Two corresponding threads in the OD sub-
system support loading and unloading respectively. The OD sub-system 
maintains a collection of loaded detectors, and the special cases of empty 
and loaded (i.e. one or more detectors are loaded) are handled, in particular 
because detection will not proceed if no detectors are loaded. Otherwise, the 
loading and unloading can be done on-the-fly.  

Detection is started by the DSm, with the start detection interaction, which 
moves this main thread to the detecting state. From here, three threads 
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handle the various interactions with the OD sub-system. The first two deal 
with notifications of either anomaly events or errors occurring during the 
process of the current batch of CDRs. The third allows the DSm to request 
the OD sub-system to stop detecting. 

Once detecting has been started by the DSm, the OD sub-system has two 
threads. The first caters for the possibility that the user might wish to stop 
the detection process. The stop detecting interaction, driven by the DSm, 
results in the stop requested state within the OD sub-system. The second 
thread within the OD sub-system is actively engaged in detection cycles. At 
the start of each detection cycle, this thread checks the state to see if a stop 
has been received and if so, returns to the initial state. If not, then the 
thread proceeds to check whether any detectors are loaded (the loaded 
state). If not, the thread returns to the detecting state. If there are detectors 
loaded, data is read by interacting with the mediation layer, and processed 
by running the detectors. At this point, there are three choices: if an 
anomaly is detection, it is communicated to the DSm; if an error occurs 
during processing, it is communicated to the DSm; if no anomalies are 
detection and no errors occur, the thread returns to the detecting state. The 
processing of anomalies and errors is a concern for the DSm design, and 
therefore, is not defined here. 
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Figure 31. Role Activity Diagram for the online detection sub-system. 
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1.8.61.8.61.8.61.8.6 Usage scenariosUsage scenariosUsage scenariosUsage scenarios    

This section clarifies the usage of the FD/BP AI module, highlighting the 
typically steps involved in preparing and executing training and detection 
cycles. 

1.8.6.81.8.6.81.8.6.81.8.6.8 TrainingTrainingTrainingTraining    

Steps 1 – 3 can be performed in any order. Step 1 is optional, steps 2 and 3 
are obligatory, prior to training. 

1. Load configuration, restore the default configuration, or leave the 
configuration alone (either previously loaded configuration or default 
configuration). This step is optional. 

TReturnCode dt_config_loadConfig (char *path); 
void dt_config_defaultConfig (void); 

2. Connect the training sub-system to a source of input data (provided by 
the mediation layer). Data will be read under the training sub-system’s 
control, hence, connecting the data source essentially involves providing 
handles to four callback functions. 

void dt_dataIn_setDataInput ( 
   int          (*dt_dataInNotify_getNumPeriods) (void                   ), 
   int          (*dt_dataInNotify_getNumRecords) (int period             ), 
   TCallRecord *(*dt_dataInNotify_getCallRecord) (int period, int record ), 
   void         (*dt_dataInNotify_free         ) (TCallRecord *callRecord) 
                            ); 

3. Provide a destination for the trained detectors. Detectors are written to a 
storage device external to the training sub-system (provided by the 
integration framework) at the end of the training cycle.  

void dt_detectorOut_setWriter ( 
   void (*dt_detectorOutNotify_write) (char *pData, int size, double error) 
                              ); 

4. Initiate the training process. Optionally, provide a callback function for 
periodic progress notifications. Training can be stopped if needed. 

TReturnCode dt_training_run ( 
   void (*dt_trainingNotify_progress) (int epoch, double error) 
                            ); 
void dt_training_stop (void); 

1.8.6.91.8.6.91.8.6.91.8.6.9 Online DetectionOnline DetectionOnline DetectionOnline Detection    

Online detection is similar in terms of set up. Step 1 is optional. Steps 2 and 
3 are obligatory, prior to detection. 

1. Load configuration, as per training. This step is optional. 

TReturnCode od_config_loadConfig (char *path); 
void od_config_defaultConfig (void); 

2. Connect to input source. This ‘online’ data is provided by the mediation 
layer, to be read under the control of the detection sub-system. 

void od_dataIn_setDataInput ( 
   int          (*od_dataInNotify_getNumRecords) (void                   ), 
   TCallRecord *(*od_dataInNotify_getCallRecord) (int record             ), 
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   void         (*od_dataInNotify_nextPeriod   ) (void                   ), 
   void         (*od_dataInNotify_free         ) (TCallRecord *callRecord) 
                            ); 

3. Set destination for anomaly indications. These are sent as and when 
discovered by the detection sub-system. 

void od_anomaly_setAnomalyNotify ( 
   void (*anomalyNotify_anomaly) (int     uid, 
                                  int     detectionType, 
                                  double  threshold, 
                                  double  actual, 
                                  char   *subscriber) 
                                 ); 

4. Load one or more detectors into the detection sub-system, from external 
storage device provided by the integration framework, as previously stored 
by the training sub-system. Detectors can be loaded/unloaded on-the-fly. 

TReturnCode od_detectorIn_loadDetector (char  *pDetector, 
                                        int    size, 
                                        int    uid, 
                                        int    detectionType, 
                                        double threshold); 
TReturnCode od_detectorIn_unloadDetector (uid); 

5. Run detection sub-system. Optionally, provide a callback function for 
notification of any errors that occur during processing. Training can be 
stopped if needed. 

TReturnCode od_detection_run ( 
   void (*od_detectionNotify_error) (TReturnCode error) 
                             ); 
void od_detection_stop (void); 

 

1.8.71.8.71.8.71.8.7 Function descriptionsFunction descriptionsFunction descriptionsFunction descriptions    

Function descriptions for the API described in Section 1.8.2, are provided 
below. 

 

Interface dt_config 

Method name dt_config_loadConfig 

Purpose To load a configuration file for the detector training sub-system. 

Parameters 
path Null terminated string defining full path to configuration file. 

Returns Return code indicating success/failure. 

Preconditions Detector training sub-system is stopped. 

Notes  

 

Interface dt_config 

Method name dt_config_defaultConfig 

Purpose To restore the default configuration of the detector training sub-
system.  

Parameters 
  

Returns  

Preconditions Detector training sub-system is stopped. 
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Notes Default values determined during implementation. 

 

Interface dt_dataIn 

Method name dt_dataIn_setDataInput 

Purpose To set callback functions for reading call records from external storage 
device. 

Parameters 
dt_dataInNotify_getNumPeriods Function pointer. See separate callback contract. 
dt_dataInNotify_getNumRecords Function pointer. See separate callback contract. 
dt_dataInNotify_getCallRecord Function pointer. See separate callback contract. 
dt_dataInNotify_free Function pointer. See separate callback contract. 

Returns  

Preconditions Detector training sub-system is stopped. 

Notes  

 

Interface dt_dataInNotify 

Method name dt_dataInNotify_getNumPeriods 

Purpose Callback function to allow detector training sub-system to ascertain 
the number of periods of data in the training set to be profiled. 

Parameters 
  

Returns Number of periods of data in the training set. 

Preconditions  

Notes  

 

Interface dt_dataInNotify 

Method name dt_dataInNotify_getNumRecords 

Purpose Callback function to allow detector training sub-system to ascertain 
the number of records within the specified period of training data. 

Parameters 
period Index of period to query. 

Returns Number of records within period. 

Preconditions  

Notes  

 

Interface dt_dataInNotify 

Method name dt_dataInNotify_getCallRecord 

Purpose Callback function to allow the detector training sub-system to acquire 
a handle to the specified call record from external storage device. 

Parameters 
period Index of period. 
record Index of record. 

Returns Handle to call record. 

Preconditions  

Notes See also dt_dataInNotify_free. 

 

Interface dt_dataInNotify 

Method name dt_dataInNotify_free 

Purpose Callback function to allow the detector training sub-system to inform 
external storage device that it has finished with a handle to a call 
record. Facilitates memory management; may be stubbed if not 
required. 

Parameters 
callRecord Handle to record to be freed. 

Returns  

Preconditions Record has been previously acquired (see 

dt_dataInNotify_getCallRecord). 
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Notes  

 

Interface dt_detectorOut 

Method name dt_detectorOut_setWriter 

Purpose To set callback function to be used by the detector training sub-system 
for writing trained detector(s) to external storage device. 

Parameters 
dt_detectorOutNotify_write Function pointer. See separate callback contract. 

Returns  

Preconditions Detector training sub-system is stopped. 

Notes  

 

Interface dt_detectorOutNotify 

Method name dt_detectorOutNotify_write 

Purpose To write a trained detector to external storage device. 

Parameters 
pData Handle to memory location containing packed detector to be written. 
size Number of bytes to write. 
error Measure of the error of the trained detector on the training data. 

Returns  

Preconditions  

Notes Error indicator may be used by training expert to determine whether 
detector should be retained, or by analyst to determine whether to 
deploy the detector and a suitable threshold to apply (see 

od_detectorIn_loadDetector). 

 

Interface dt_training 

Method name dt_training_run 

Purpose To initiate a training cycle. 

Parameters 
dt_trainingNotify_progress Function pointer. See separate callback contract. 

Returns Return code indicating success/failure. 

Preconditions Input source and detector output connected (configuration is optional). 
Detector training sub-system is stopped. 

Notes Callback function dt_trainingNotify_progress may be set to null, 

in which case it is ignored. Otherwise, this function will be called 
periodically to indicated progress on the training cycle. 

 

Interface dt_training 

Method name dt_trainingNotify_progress 

Purpose Hook to acquire progress indication from the training cycle. 

Parameters 
epoch Indicator of progress – current training epoch. 
error Indicator of progress – measure of the error of the detector on the 

training data.  

Returns  

Preconditions  

Notes Interpretation of progress indicators to be determined at design time. 

 

Interface dt_training 

Method name dt_training_stop 

Purpose To interrupt the training process.  

Parameters 
  

Returns  

Preconditions Detector training sub-system is started. 
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Notes If a training cycle has been initiated, all progress will be lost, and the 
sub-system restored to a state ready for training to begin. There is no 
guarantee how quickly the sub-system will respond – this call will 
block until the sub-system is ready. 

 

Interface od_config 

Method name od_config_loadConfig 

Purpose To load a configuration file for the online detection sub-system. 

Parameters 
path Null terminated string defining full path to configuration file. 

Returns Return code indicating success/failure. 

Preconditions Online detection sub-system is stopped. 

Notes  

 

Interface od_config 

Method name od_config_defaultConfig 

Purpose To restore the default configuration of the online detection sub-system.  

Parameters 
  

Returns  

Preconditions Online detection sub-system is stopped. 

Notes Default values determined at design time. 

 

Interface od_dataIn 

Method name od_dataIn_setDataInput 

Purpose To set callback functions for reading call records from online data 
stream. 

Parameters 
od_dataInNotify_getNumRecords Function pointer. See separate callback contract. 
od_dataInNotify_getCallRecord Function pointer. See separate callback contract. 
od_dataInNotify_nextPeriod Function pointer. See separate callback contract. 
od_dataInNotify_free Function pointer. See separate callback contract. 

Returns  

Preconditions Online detection sub-system is stopped. 

Notes  

 

Interface od_dataInNotify 

Method name od_dataInNotify_getNumRecords 

Purpose Callback function to allow online detection sub-system to ascertain the 
number of records within the current period. 

Parameters 
  

Returns Number of records within period. 

Preconditions  

Notes  

 

Interface od_dataInNotify 

Method name od_dataInNotify_getCallRecord 

Purpose Callback function to allow the online detection sub-system to acquire a 
handle to the specified call record within the current period. 

Parameters 
record Index of record. 

Returns Handle to call record. 

Preconditions  

Notes See also od_dataIn_free. 

 

Interface od_dataInNotify 
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Method name od_dataInNotify_nextPeriod 

Purpose Callback function to signify that the online detection sub-system has 
finished processing the current period.  

Parameters 
  

Returns  

Preconditions  

Notes This function must block until the next period is available and the data 
stream is ready to provide access to records for the next period. 

 

Interface od_dataInNotify 

Method name od_dataInNotify_free 

Purpose Callback function to allow the online detection sub-system to inform 
the data stream that it has finished with a handle to a call record. 
Facilitates memory management; may be stubbed if not required. 

Parameters 
callRecord Handle to record to be freed. 

Returns  

Preconditions Record has been previously acquired (see od_dataIn_getCallRecord). 

Notes  

 

Interface od_detectorIn 

Method name od_detectorIn_loadDetector 

Purpose To load a trained detector into the online detection sub-system. 

Parameters 
pDetector Handle to memory location containing packed detector to be loaded. 
size Number of bytes to read. 
uid Externally allocated unique identifier for this detector. 
detectionType Determines whether an anomaly indication will be raised on a match (if 

zero) or a mismatch (if non zero). 
threshold Determines the level of match/mismatch at which an anomaly 

indication will be raised. Valid values are greater than 0 (interpretation 
to be defined at design time). A negative value causes this argument to 
be ignored and the default value (to be specified at design time) to be 
used. 

Returns Return code indicating success/failure. 

Preconditions Trained detector available for loading. Detector with matching identifier 
is not loaded. 

Notes There is no guarantee how quickly the sub-system will respond. This 
function will block until the detector is loaded. 

 

Interface od_detectorIn 

Method name od_detectorIn_unloadDetector 

Purpose To unload a detector from the online detection sub-system. 

Parameters 
uid Identifier of detector to unload. 

Returns Indicator of success/failure. 

Preconditions Detector with matching identifier currently loaded. 

Notes There is no guarantee how quickly the sub-system will respond. This 
function will block until the detector is unloaded. 

 

Interface od_anomaly 

Method name od_anomaly_setAnomalyNotify 

Purpose To set a callback function to be used by the online detection sub-
system for notification of anomalies in the online data stream. 

Parameters 
anomalyNotify_anomaly Function pointer. See separate callback contract. 
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Returns  

Preconditions Online detection sub-system is stopped. 

Notes  

 

Interface od_anomalyNotify 

Method name od_anomalyNotify_anomaly 

Purpose To notify external system of the detection of an anomaly in the online 
data stream. 

Parameters 
uid Identifier of detector causing anomaly indication. 
detectionType Type of detection. Zero indicates match, non-zero indicates mismatch. 
threshold Threshold set for this detector. 
actual Actual value of indication (less than threshold for match, greater than 

threshold for mismatch). 
subscriber Identifier of the first subscriber within the current set of call records. 

Returns  

Preconditions  

Notes  

 

Interface od_detection 

Method name od_detection_run 

Purpose To initiate the online detection process. 

Parameters 
od_detectionNotify_error Function pointer. See separate callback contract.  

Returns Indicator of success/failure. 

Preconditions Input source and anomaly output connected (configuration is optional). 
At least one detector loaded. Online detection sub-system is stopped. 

Notes Callback function od_detectionNotify_error may be set to null, in 

which case it is ignored. Otherwise, this function will be called on each 
occurrence of an error in the detection process. 

 

Interface od_detectionNotify 

Method name od_detectionNotify_error 

Purpose Hook to acquire error notifications from detection process. 

Parameters 
error Error indicator (same format as return codes). 

Returns  

Preconditions  

Notes  

 

Interface od_detection 

Method name od_detection_stop 

Purpose To interrupt the detection process. 

Parameters 
  

Returns  

Preconditions Online detection sub-system started. 

Notes If detection process has been initiated, all progress will be lost, and the 
sub-system restored to a state ready for detection to begin. There is no 
guarantee how quickly the sub-system will respond – this call will 
block until the sub-system is ready. 
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1.91.91.91.9 Quality of Service requirementsQuality of Service requirementsQuality of Service requirementsQuality of Service requirements    

This section considers the quality attributes of the FD/BP AI module. It 
should be noted that the purpose of this development is largely for proof-of-
concept, to explore whether the selected AI techniques can add value to the 
network management domain. Hence, quality of service is not a primary 
concern. Nonetheless, quality attributes will be evaluated within the project. 

1.9.11.9.11.9.11.9.1 Constraints and limitationsConstraints and limitationsConstraints and limitationsConstraints and limitations    

AI is not an exact science. Therefore, the results are, to some extent, 
unpredictable, and the system may raise false alarms for some conditions, 
and miss behaviours of interest for others. The effectiveness of AI techniques 
depends not only on the nature of the techniques, but also on the quality 
and quantity of the data, particularly that used for training. Further, learned 
structures are difficult for a user to understand and are not generally able to 
provide a chain of reasoning. Hence, the benefits of automated learning and 
generalisation come at the cost of non-determinism and lack of 
interpretability. The purpose of this development is to examine the ability of 
one or more selected AI techniques to meet some of the challenges of FD and 
BP, hence, the exploratory nature of this development should be considered 
during evaluation. The primary constraint comes from the lack of domain 
knowledge, specifically, the limited information available from the operator 
concerning the nature of fraud classes. The operator assumes that many 
more fraud classes exist within their environment than the single example 
included within the sample data, and, whilst evidence from the literature 
would support this view, the operator is not able to provide details. Hence, 
robust evaluation is challenging. However, an approach for extracting 
domain knowledge from the unlabelled data has been developed. This is a 
time consuming process that requires domain expert involvement, but allows 
the deployed techniques to move up the scale from unsupervised data 
mining, through anomaly detection to specialised misuse detection.  

1.9.21.9.21.9.21.9.2 ScalabilityScalabilityScalabilityScalability    

In terms of proof-of-concept, scalability is not a primary concern, however, it 
is important that the selected techniques could be scaled to facilitate near 
real time analysis of full traffic on a complete network. Naturally, at this 
stage it is difficult to predict the run time of the finished AI module based 
only on the prototype system. However, since training is an offline process, 
the concern here is the execution time of the feature extraction and detection 
– data delivery is the concern of the integration framework and mediation 
layer. Consider the scenario of a hypothetical network with 15 million 
subscribers, all active during a given week. In order to process CDRs at the 
subscriber level, the detection sub-system must be able to perform feature 
extraction and run the loaded detectors at a rate of 25 subscribers per 
second. Performance measurements on the research prototype suggest that 
the execution time of individual detectors is very short, and the bottleneck 
may then be data delivery (outside of the scope of concerns of the AI module) 
and feature extraction; however, it does depend very much on the number of 
detectors loaded. Should performance increases be required, multiple 
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instances of the AI module could be deployed, to exploit SMP and/or 
multicore hardware platforms. The selected approach is naturally data 
parallel, and can be scaled across clusters or other distributed platforms 
with ease, provided that the mediation layer / integration framework is 
capable of spawning independent instances of the module and distributing 
call records according to, for example, subscriber identifiers. The module will 
be implemented in C/C++ for performance reasons, and profiling tools may 
be used to target optimisation efforts should that be necessary. 

One way to manage the mass of data, is to identify groups of subscribers 
that may be processed by the same detectors. The data mining process, 
described in Section 1.6.4, may be used to select groups of subscribers 
based on the similarity of their calling behaviours. These may then be 
processed without configuration / detector changes, thus improving overall 
throughput. Further, as domain knowledge is built up, the system may move 
from a largely anomaly detection basis, to a more misuse detection basis. 
Such a shift means that the same detectors may be applied to more (or 
possibly all) subscribers, further reducing the need for configuration / 
detector changes. 

1.9.31.9.31.9.31.9.3 ReliabilityReliabilityReliabilityReliability    

Reliability concerns will be dealt with through rigorous software development 
processes and thorough testing, including stress testing. Stress testing can 
be facilitated through the use of large files of prepared CDRs, or by the 
development of a simple CDR generator, creating large quantities of 
randomised (synthesised) CDRs for analysis. Leak tracing tools will be 
deployed, if needed, to identify potential memory management issues. The 
required MTTF (defined in the requirements document, D2.4.1) is 7 days, 
with a maximum downtime of 30 minutes per week. This is not a 
particularly onerous requirement, provided that there are no memory 
management issues, either within the module, or the associated parts of the 
MDS operating on the same platform, and that thorough stress testing is 
performed to eliminate short MTTF defects. The latter point is important, 
because research has shown that many testing strategies are not sensitive to 
MTTF, and much effort is therefore spent removing defects that would not 
violate the quality of service constraints. Indeed, MTTFs tend to be 
distributed exponentially across several orders of magnitude such that the 
percentage of total defects within the software having an MTTF of less than 7 
days may be considered to be particularly small (e.g. <<1%). 

Since the module does not record state information from the previous 
processing cycle for use in the next, following a failure, it can be brought 
back online as soon as the system is available (e.g. after a reboot of the 
server, if necessary). The integration framework should ensure that the data 
feed can be rolled back to the previous period, to avoid missing an analysis 
step. Further, as suggested in the requirements document, multiple 
instances may be deployed on backup servers. 



 63 

1.9.41.9.41.9.41.9.4 EffectivenessEffectivenessEffectivenessEffectiveness    

According to the requirements document, D2.4.1, the system should aim to 
perform within 50% false positives and 10% false negatives, which 
corresponds to a detection rate of 83% and a false alarm rate of 36%. 
However, it was acknowledged that, in an exploratory system such as this, it 
is difficult to estimate whether this could be achieved in the proof-of-concept 
version. A requirement to support retraining was expressed, to enable an 
attempt to reduce the number of false positive and false negative indications. 
The detection rate is certainly challenging, especially given the lack of 
domain knowledge concerning misuse classes and their properties. The false 
alarm rate is less of a concern, although raising the alarm threshold to 
minimise false alarms may have some impact on the detection rate. In any 
event, it is evident that the operator’s current understanding of fraud 
characteristics will not initially support such detection/false alarm rates, 
and the system must rely on the process of building domain knowledge, over 
time, following, for example, the process described in Section 1.4.1. 
Ultimately, with this hybrid approach, it is envisaged that such rates may 
indeed be achieved, particularly when misuse detection techniques become 
feasible. The caveat, of course, is that the behavioural properties present in 
the extracted feature vector will permit the separation of classes (i.e. that the 
irreducible classification error is significantly within the performance 
thresholds). These properties will need to be assessed during the evaluation 
of the MDS. 

The processes surrounding expert intervention within the training and 
detection phases are particularly important here. Adopting the anomaly 
detection approach results in a system prone to false positives due to an 
incomplete picture of normality. This can be improved, over time, by 
incorporating the records from such false alarms into the training set for the 
anomaly detector, thereby attempting to correct such errors for the future. 
Adopting the misuse detection approach results in a system prone to false 
negatives, due to the inability to detect previously unseen misuse classes, 
where they differ markedly from the learnt class(es). Hence, the combination 
of both approaches is needed, with appropriate intervention from domain 
experts, to refine the knowledge repository in respect of training data for 
anomaly detection and known misuse classes for misuse detection. 

Data mining will be a useful tool in improving the detection rates and false 
alarm rates, since it allows the tailoring of detector training to subscriber 
groups with particular behavioural characteristics. This results in more 
homogenous training data, and hence potential improvements in the 
discrimination between classes. Again, the utility of this approach will need 
to be assessed during the evaluation of the MDS. 

The setting of an appropriate threshold for detection is not difficult, provided 
that the training data is representative. It has been suggested that this 
threshold be based on, for example, the peak output on the training data 
(assuming that data to be entirely normal), with a suitable margin added to 
minimise false positives. However, as domain knowledge is built up over 
time, it will be possible to be more ‘intelligent’ in the setting of this threshold. 
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For example, with samples of known normal and abnormal data, it would be 
possible to optimise the trade-off between detection and false alarms. With 
data mining to identify subscriber groups with similar behaviours, this may 
result in further improved separation of classes.  

1.9.51.9.51.9.51.9.5 Methods of evaluationMethods of evaluationMethods of evaluationMethods of evaluation    

The evaluation of the effectiveness of the FD/BP AI module is challenging as 
it considers two inseparable properties: 

a. The ability of the AI solution to deliver the target detection and false 
alarm rates. 

b. The nature of the data, that determines whether the information 
content will allow the AI solution to meet the performance targets. 

Hence, a failure to meet a given target may or may not reflect a deficiency 
within the AI module. For example, if a given fraud class cannot be 
distinguished from otherwise normal behaviour based on the features 
available, this is a problem with the data, rather than the AI module. It is 
very difficult to separate these concerns. Further, meeting the target 
detection and false alarm rates requires that the class separation (i.e. the 
difference in properties between normal and abnormal behaviour) exceeds 
the natural variation in normal patterns of subscriber behaviour. That is, 
even if the system is capable of distinguishing between normal and abnormal 
behaviours, the noise within the normal profiles may result in false positive 
indications or, if the threshold is increased to reduce or eliminate them, false 
negative indications. Thus, the recommendation would be to use the output 
of the AI module as a ‘priority list’ for investigation. 

Given the lack of domain knowledge, it is challenging to establish an effective 
evaluation scheme. The operator, for example, is not able to provide misuse 
cases for anything other than FCT fraud. This prevents empirical studies 
that might otherwise gain a measure of the effectiveness of the AI module, or 
even some confidence in the output. Three strategies are proposed, therefore, 
for evaluation: 

a. During the evaluation phase, the operator will deliver a large number 
of subscriber-weeks worth of data to the module. The prioritised 
outputs of the AI module will be sampled to assess the reliability of the 
alarms raised. Misclassified outputs will inform the retraining of the 
AI, and then the AI will be reassessed. Several such cycles may be 
employed to improve the performance. 

b. Synthetic data sets, such as that used for the feasibility study in 
Section 1.4.3, will be generated to explore the sensitivity of the AI 
module to variations in various features. This will provide an 
indication of the discrimination possible. The operator will need to 
provide information on the sort of deviations that might be indicative 
of fraudulent usage, based on their domain knowledge. This will 
inform the synthesis of the test data. 

c. A cost / benefit analysis will be performed to assess the business 
potential of the AI module. This will involve projections of alarm rates 
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from the sample data to a complete network, and an estimate of the 
time and cost involved in expert verification of results, and the savings 
possible from improved revenue protection. The operator will need to 
provide the information required to produce such a model. This form 
of evaluation is arguably far more important than the actual detection 
and false alarm rates, as it will indicate the value added to the 
operator’s business by the use of the AI module, and the implications 
of doing so. 

The data mining process is also difficult to evaluate since there is no 
intrinsic notion of success or failure in data mining. Since the purpose of 
data mining is to identify naturally occurring patterns in data, it is entirely 
possible that there may not be any readily discernable patterns based on the 
features available, or that patterns that may be discerned may have no 
useful interpretation in the domain. The proposed evaluation process is 
therefore based on the notion of improving the homogeneity of training data. 
One or more detectors will be trained on a given data set. The mining, with 
pre-trained detectors, will be performed to identify subscriber groups. The 
corresponding data set will be filtered according to subscriber group and 
new detectors trained. The resulting detectors should show improved 
training accuracy and discrimination ability. These will be used to mine the 
data, again, and assess the ability of this process to distinguish differing 
behavioural profiles. Such efforts may well also feed into the evaluation of 
the AI module in terms of detection and false alarm rates. The data mining 
results will also be inspected by domain experts, in an attempt to assess the 
utility from a business process perspective. 


