
www.bournemouth.ac.uk

Software Systems Modelling

Dr Keith Phalp (and others…)

Computing Framework Software Systems Modelling

Alternative Designs

• Just as an example of alternative design
approaches this example, from a state of the art
EC funded international project uses a
combination of approaches (all of which are non-
UML).

• The requirements document and the design
document both use the same basic approach.

• The design expands upon the requirements.
• Modelling notations include Role Activity

Diagrams and DFDs, linked by shared functions.
• An API is also produced.

Computing Framework Software Systems Modelling

Background Approach

1) Behavioural process models (depicted as Role Activity Diagrams, RADs), show the
actions that are required from the domain from the major roles (either people or
sub-systems), the interactions among those roles, and the dependencies and
interdependencies of those actions. The textual narrative to accompany the Role
Activity Diagrams cross references those activities (actions and interactions) with
the requirements list in Section . Requirements are denoted DTx and ODx, for DT
and OD sub-systems, respectively, where x is the specific numbered requirement.

2) A procedural model (depicted as a Yourdon data flow diagram, DFD) shows the
system boundaries for FD and BP sub-systems, their input and output data, and
those other major processes and systems with which they will exchange data. This
model not only provides a context for the requirements, but also delineates the
sphere of involvement for FD and BP, and the data that must cross sub-system
boundaries, and which must, therefore, be specified.

Computing Framework Software Systems Modelling

System View and
Sub-systems

● Fraud detection and business process aspects of the MDS are both centred on the
processing of Call Data Records (CDRs), and the identification of patterns that represent
some variation in behaviour from accepted norms.

● These patterns must be identified for later interpretation by experts that are able, on the
basis of domain knowledge and/or information gathered from other sources (such as
performance and fault data), to ascertain whether the patterns are: indicative of fraud,
indicative of a change in user behaviour that is of importance to the operator’s business
processes OR incidental, and of no interest to the operator

● The processes of profiling CDRs and identifying variations in patterns of behaviour are
identical, regardless of whether those variations are related to FD or BP, hence, these
aspects are treated together. It is the domain expert’s task to determine the impact or
otherwise of the results from the FD and BP sub-systems of the MDS.

● Since the MDS focuses on the application of Artificial Intelligence (AI) techniques to
various aspects of the operator’s business, there is a clear need for two sub-systems:
one for training detectors (that is, machines for the detection of variations in
behaviours), and one for online detection (that is, the deployment of trained detectors).
In addition, a data mining process is also considered, as a useful way of identifying
appropriate training data, as well as supporting directly the operator’s business
processes (by visualising/analysing patterns of calling behaviour).

Computing Framework Software Systems Modelling

Detector Training

● The purpose of detector training (DT) is to create a computational machine
(referred to as a detector) capable of recognising a usage profile based on example.

● Training is based on building a profile of behaviour over a number of defined
intervals (in the prototype system this is to be restricted to weekly intervals), where
each interval comprises zero or more individual call records for one or more users,
selected by a domain expert.

● An AI engine is ‘learns’ the essence of user behaviour during these periods, and
develops a detector that is capable of offering an indication of variation...

● Input data may be selected, by a domain expert, directly from available CDRs or
may be selected based on information provided by the data mining process.

● The training process is the same, in either case. Patterns of behaviour may be
indicative of fraud or of behaviours of interest to the operator’s business processes.

● The result of training is a detector that can be deployed to process online data to
indicate the extent of variation in behaviours between those present in the training
set and those present in the online data.

Computing Framework Software Systems Modelling

Detector Training

● On commencement (initial), there are three parallel threads.
● 1) Configuration, within which there are three choices. These are either load config (DT1) or

restore config (DT2), or no action, which thus implies that the current configuration will be
kept (on commencement this is the default configuration). Either of these threads results in a
configuration being loaded (configuration loaded state).

● 2) Connect to input source, for training data (DT3).
● 3) Select output destination, for trained detectors (DT4).

● Once all three parallel threads are complete, that is, configuration loaded, connected to input and
destination selected, a ready state is reached and the start training (DT5) action can be carried out,
resulting in the role being in a training state. From here there are two main choices. One is the
continuation of training (until finished); the other is to stop training (DT6). Continuation includes two
parallel threads. The first thread is to read data from input source (DT7). Once data is read (data
read), training the detector on the input data (train detector, DT8), can commence. The training state
is then reached again, and the sequence of reading and training continues until training is finished,
when the trained state is reached. From this state the write trained detector interaction writes the
detector (DT10) to the output destination (modelled as the Repository). Having written the detector the
role is then ready to being the training cycle again. The second thread allows for progress reporting
(DT9), shown as an interaction with the Trainer. Finally, there is the choice to train again, returning
to the ready state, or to reset, which returns to the initial state, so that configurations and connections
can be chosen again.

Computing Framework Software Systems Modelling

On-line Detection

● Online detection (OD) is concerned with the deployment of one or more previously
trained detectors.

● These detectors should be capable of raising anomaly indications on the occurrence
of either a match or mismatch between the learnt behaviours and those present in
the online data. That is, a detector may be trained to recognise fraudulent
behaviour, or normal behaviour.

● The detector’s purpose is to extract the essence of the behaviours and provide an
indication of the variation between the training set and the online data.

● The OD sub-system should, therefore, offer the option of processing this for a match
or mismatch, in effect implementing misuse detection and anomaly detection, in the
accepted parlance of the field.

● Multiple detectors may be applied simultaneously, to characterise incoming data in
different ways, such as for different classes of fraud.

Computing Framework Software Systems Modelling

On-line Detection

● The Online Detection role is broken into two higher level parallel structures, which involve: The loading and
unloading of detectors; the configuration and connection, then subsequent detection. Note that loading and
detection are separate, and, hence, detection may commence irrespective of detectors loaded. However, in practice
one may wish to restrict the detection process such that its commencement and continuation is conditional on one
or more detector(s) being loaded. First, the detectors thread is considered. Either some detectors are already
loaded, or the detectors are empty. In either case, the loading of a (trained) detector (OD3), takes the role to the
loaded state. Note that this involves an interaction with the Repository, from where trained detectors are retrieved.
Alternatively, a detector may be unloaded (OD4). Depending on the number of detectors loaded, the loaded or
empty state would be reached, and so on (note that an unload attempt on the empty state will simply return to the
empty state). As with the DT model, the setup thread, which deals with the prerequisite for the OD to be ready for
detection, involves three parallel threads: Configuration, within which there are three choices. These are either
load config (OD1) or restore config (OD2), or no action, which thus implies that the current configuration will be
kept (on commencement this is the default configuration). Either of these threads results in a configuration being
loaded (configuration loaded state). Connect to input source for online data (OD5). Select output destination, for
anomaly indications (OD6).

● It is the completion of the setup thread that moves Online Detection to the ready state. From here start detection
(OD7), causes a move to the detecting state. Within detecting there are two main (choice) threads. The first
consists of the reading (OD9) input data and processing using loaded detectors (OD10). If nothing is found within
the data, then detecting simply continues, with the next read and process cycle. If an anomaly is found, (event
anomaly) then an anomaly indication is sent to the Analyst (OD11), and then detecting continues. If an error is
found (event error), then an error indication is sent to the Analyst (OD12), and again detecting continues. The
second thread allows for detection to be stopped (OD8), at which point the sub-system is either able to return to
the ready, to resume detection, or to be reset returning to its initial state), e.g. so that the setup can be changed.

Computing Framework Software Systems Modelling

Detector Training

Trainer

Repository

initial

connect
to input
source

load
config

restore
config

select output
destination

start training

connected
to input

destination
selected

training

read data
from input
source

train detector

send progress
notifications

write trained detector

stop training
data read

finished

detector
added

default config

configuration
loaded

ready

ready

trained

training

detector
retrieved

To Online Detection

train again reset

ready initial

Computing Framework Software Systems Modelling

Online Detection

Analyst

empty

read data
from input
source

process input
data

stop detection

data read

unload

loaded

loaded

empty

loaded

load
detector

initial

connect
to input
source

load
config

restore
config

select output
destination

start detection

connected
to input

destination
selected

detecting

default config

configuration
loaded

ready

erroranomaly

send anomaly
indication

send error
indication

detecting

detecting
error indicator
received

Repository

detector
added

detector
retrieved

from detector
training

anomaly
indication
receiveddetecting

reset

initial

ready

Computing Framework Software Systems Modelling

Filter Data

Online
Detection

Selected Data

Training
Configuration

Detectors

Knowledge
Repository

od_anomalyNotify

Configurator

Online
Data Source

Decision
Support

Data Mining

Detector
Training

Extracted Data
Validation
(by expert)

Validated Data

dt_config

dt_detectorsOut

dm_dataIn

dt_dataIn

Detection
Configuration od_config

od_dataIn

od_detectorsIn

dt_dataIn

Business
Process

Data

Business
Process
Users

Historical
Data Source

Detector Update

Trainerdt_progressNotify

Analyst

od_errorNotify

dt_training

od_detection

Computing Framework Software Systems Modelling

Training
Requirements

The trainer must be able to:

DT1. Load a configuration file
DT2. Restore default configuration
DT3. Connect to an input source
DT4. Select output destination for trained detectors
DT5. Start training cycle
DT6. Stop training cycle

While the training cycle is running, the detector training sub-system must:

DT7. Read data from input source, as required for training process
DT8. Train detector on input data
DT9. Send progress notifications to trainer
DT10. Write trained detector to output destination

Computing Framework Software Systems Modelling

Detection
Requirements

The analyst must be able to:

OD1. Load a configuration file
OD2. Restore default configuration
OD3. Load a (trained) detector
OD4. Unload a detector
OD5. Connect to an input source
OD6. Select output destination for anomaly indications
OD7. Start detection process
OD8. Stop detection process

While the detection process is running, the online detection sub-system must:

OD9. Read data from input source
OD10. Process input data with loaded detectors
OD11. Send anomaly indications to analyst
OD12. Provide analyst with indications of errors encountered during processing

Computing Framework Software Systems Modelling

Summary

• Brief overview of how different models can be
used depending on the context.

• This is the requirements phase models.
• The design document has more detailed RADs and

DFDs, along with UML component models,
functions described, and a complete description of
 the systems design.

• Of course, this is not an argument for using RADs,
rather an illustration of choice. That is, choose the
notation(s) for the job at hand.

• In essence, this 'horses for courses' argument
suggests something like a 'problem frames'
approach to Software Systems Modelling.

