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Alternative Designs

• Just as an example of alternative design 
approaches this example, from a state of the art 
EC funded international project uses a 
combination of approaches (all of which are non-
UML).

• The requirements document and the design 
document both use the same basic approach. 

• The design expands upon the requirements. 
• Modelling notations include Role Activity 

Diagrams and DFDs, linked by shared functions.
• An API is also produced. 
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Background Approach

1) Behavioural process models (depicted as Role Activity Diagrams, RADs), show the 
actions that are required from the domain from the major roles (either people or 
sub-systems), the interactions among those roles, and the dependencies and 
interdependencies of those actions. The textual narrative to accompany the Role 
Activity Diagrams cross references those activities (actions and interactions) with 
the requirements list in Section . Requirements are denoted DTx and ODx, for DT 
and OD sub-systems, respectively, where x is the specific numbered requirement.

2) A procedural model (depicted as a Yourdon data flow diagram, DFD) shows the 
system boundaries for FD and BP sub-systems, their input and output data, and 
those other major processes and systems with which they will exchange data. This 
model not only provides a context for the requirements, but also delineates the 
sphere of involvement for FD and BP, and the data that must cross sub-system 
boundaries, and which must, therefore, be specified.
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System View and 
Sub-systems

●    Fraud detection and business process aspects of the MDS are both centred on the 
processing of Call Data Records (CDRs), and the identification of patterns that represent 
some variation in behaviour from accepted norms. 

●   These patterns must be identified for later interpretation by experts that are able, on the 
basis of domain knowledge and/or information gathered from other sources (such as 
performance and fault data), to ascertain whether the patterns are: indicative of fraud, 
indicative of a change in user behaviour that is of importance to the operator’s business 
processes OR incidental, and of no interest to the operator

●    The processes of profiling CDRs and identifying variations in patterns of behaviour are 
identical, regardless of whether those variations are related to FD or BP, hence, these 
aspects are treated together. It is the domain expert’s task to determine the impact or 
otherwise of the results from the FD and BP sub-systems of the MDS.

●    Since the MDS focuses on the application of Artificial Intelligence (AI) techniques to 
various aspects of the operator’s business, there is a clear need for two sub-systems: 
one for training detectors (that is, machines for the detection of variations in 
behaviours), and one for online detection (that is, the deployment of trained detectors). 
In addition, a data mining process is also considered, as a useful way of identifying 
appropriate training data, as well as supporting directly the operator’s business 
processes (by visualising/analysing patterns of calling behaviour).
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Detector Training

●    The purpose of detector training (DT) is to create a computational machine 
(referred to as a detector) capable of recognising a usage profile based on example.

●     Training is based on building a profile of behaviour over a number of defined 
intervals (in the prototype system this is to be restricted to weekly intervals), where 
each interval comprises zero or more individual call records for one or more users, 
selected by a domain expert. 

●    An AI engine is ‘learns’ the essence of user behaviour during these periods, and 
develops a detector that is capable of offering an indication of variation...

●    Input data may be selected, by a domain expert, directly from available CDRs or 
may be selected based on information provided by the data mining process. 

●    The training process is the same, in either case. Patterns of behaviour may be 
indicative of fraud or of behaviours of interest to the operator’s business processes. 

●     The result of training is a detector that can be deployed to process online data to 
indicate the extent of variation in behaviours between those present in the training 
set and those present in the online data. 
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Detector Training

●     On commencement (initial), there are three parallel threads. 
● 1) Configuration, within which there are three choices. These are either load config (DT1) or 

restore config (DT2), or no action, which thus implies that the current configuration will be 
kept (on commencement this is the default configuration). Either of these threads results in a 
configuration being loaded (configuration loaded state). 

● 2) Connect to input source, for training data (DT3). 
● 3) Select output destination, for trained detectors (DT4). 

●     Once all three parallel threads are complete, that is, configuration loaded, connected to input and 
destination selected, a ready state is reached and the start training (DT5) action can be carried out, 
resulting in the role being in a training state. From here there are two main choices. One is the 
continuation of training (until finished); the other is to stop training (DT6). Continuation includes two 
parallel threads. The first thread is to read data from input source (DT7). Once data is read (data 
read), training the detector on the input data (train detector, DT8), can commence. The training state 
is then reached again, and the sequence of reading and training continues until training is finished, 
when the trained state is reached. From this state the write trained detector interaction writes the 
detector (DT10) to the output destination (modelled as the Repository). Having written the detector the 
role is then ready to being the training cycle again. The second thread allows for progress reporting 
(DT9), shown as an interaction with the Trainer. Finally, there is the choice to train again, returning 
to the ready state, or to reset, which returns to the initial state, so that configurations and connections 
can be chosen again. 
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On-line Detection

●   Online detection (OD) is concerned with the deployment of one or more previously 
trained detectors. 

●    These detectors should be capable of raising anomaly indications on the occurrence 
of either a match or mismatch between the learnt behaviours and those present in 
the online data. That is, a detector may be trained to recognise fraudulent 
behaviour, or normal behaviour. 

●     The detector’s purpose is to extract the essence of the behaviours and provide an 
indication of the variation between the training set and the online data. 

●    The OD sub-system should, therefore, offer the option of processing this for a match 
or mismatch, in effect implementing misuse detection and anomaly detection, in the 
accepted parlance of the field. 

●     Multiple detectors may be applied simultaneously, to characterise incoming data in 
different ways, such as for different classes of fraud.   
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On-line Detection

●   The Online Detection role is broken into two higher level parallel structures, which involve: The loading and 
unloading of detectors; the configuration and connection, then subsequent detection. Note that loading and 
detection are separate, and, hence, detection may commence irrespective of detectors loaded. However, in practice 
one may wish to restrict the detection process such that its commencement and continuation is conditional on one 
or more detector(s) being loaded. First, the detectors thread is considered. Either some detectors are already 
loaded, or the detectors are empty. In either case, the loading of a (trained) detector (OD3), takes the role to the 
loaded state. Note that this involves an interaction with the Repository, from where trained detectors are retrieved. 
Alternatively, a detector may be unloaded (OD4). Depending on the number of detectors loaded, the loaded or 
empty state would be reached, and so on (note that an unload attempt on the empty state will simply return to the 
empty state). As with the DT model, the setup thread, which deals with the prerequisite for the OD to be ready for 
detection, involves three parallel threads: Configuration, within which there are three choices. These are either 
load config (OD1) or restore config (OD2), or no action, which thus implies that the current configuration will be 
kept (on commencement this is the default configuration). Either of these threads results in a configuration being 
loaded (configuration loaded state). Connect to input source for online data (OD5).  Select output destination, for 
anomaly indications (OD6). 

●     It is the completion of the setup thread that moves Online Detection to the ready state. From here start detection 
(OD7), causes a move to the detecting state. Within detecting there are two main (choice) threads. The first 
consists of the reading (OD9) input data and processing using loaded detectors (OD10). If nothing is found within 
the data, then detecting simply continues, with the next read and process cycle. If an anomaly is found, (event 
anomaly) then an anomaly indication is sent to the Analyst (OD11), and then detecting continues. If an error is 
found (event error), then an error indication is sent to the Analyst (OD12), and again detecting continues. The 
second thread allows for detection to be stopped (OD8), at which point the sub-system is either able to return to 
the ready, to resume detection, or to be reset   returning to its initial state), e.g. so that the setup can be changed. 
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Detector Training
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Online Detection
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Filter Data
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Training 
Requirements

The trainer must be able to:

DT1. Load a configuration file
DT2. Restore default configuration
DT3. Connect to an input source
DT4. Select output destination for trained detectors
DT5. Start training cycle
DT6. Stop training cycle

While the training cycle is running, the detector training sub-system must:

DT7. Read data from input source, as required for training process
DT8. Train detector on input data
DT9. Send progress notifications to trainer
DT10. Write trained detector to output destination
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Detection 
Requirements

The analyst must be able to:

OD1. Load a configuration file
OD2. Restore default configuration
OD3. Load a (trained) detector
OD4. Unload a detector
OD5. Connect to an input source
OD6. Select output destination for anomaly indications
OD7. Start detection process
OD8. Stop detection process

While the detection process is running, the online detection sub-system must:

OD9. Read data from input source
OD10. Process input data with loaded detectors
OD11. Send anomaly indications to analyst
OD12. Provide analyst with indications of errors encountered during processing
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Summary

• Brief overview of how different models can be 
used depending on the context.

• This is the requirements phase models.
• The design document has more detailed RADs and 

DFDs, along with UML component models, 
functions described, and a complete description of 
 the systems design. 

• Of course, this is not an argument for using RADs, 
rather an illustration of choice. That is, choose the 
notation(s) for the job at hand. 

• In essence, this 'horses for courses' argument 
suggests something like a 'problem frames' 
approach to Software Systems Modelling. 


