
Deriving requirements from process models

via the problem frames approach*

Karl Coxa,b,*, Keith T. Phalpc, Steven J. Bleisteina,b, June M. Vernerb

aSchool of Computer Science and Engineering, University of New South Wales, Australia
bNational ICT Australia, Sydney, Australia

cEmpirical Software Engineering Research Group, Bournemouth University, UK

Received 4 March 2004; revised 27 August 2004; accepted 5 September 2004

Available online 14 November 2004

Abstract

Jackson’s problem frames is an approach to describing a recurring software problem. It is presumed that some knowledge of the

application domain and context has been gathered so that an appropriate problem frame can be determined. However, the identification of

aspects of the problem, and its appropriate ‘framing’ is recognised as a difficult task. One way to describe a software problem context is

through process modelling. Once contextual information has been elicited, and explicitly described, an understanding of what problems need

to be solved should emerge. However, this use of process models to inform requirements is often rather ad hoc; the traceability from business

process to software requirement is not always as straightforward as it ought to be. Hence, this paper proposes an approach for deriving and

contextualising software requirements through use of the problem frames approach from business process models. We apply the approach on

a live industrial e-business project in which we assess the relevance and usefulness of problem frames as a means of describing the

requirements context. We found that the software problem did not always match easily with Jackson’s five existing frames. Where no frame

was identified, however, we found that Jackson’s problem diagrams did couch the requirements in their right context, and thus application of

the problem frames approach was useful. This implies a need for further work in adapting a problem frames approach to the context of

e-business systems.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Problem frames; Process modelling; Requirements engineering; E-business systems
1. Introduction

In recent years many software developers have produced

models of client business processes [1] as an up-stream

software development phase [2]. Although it is generally

agreed that such process models are valuable in informing

requirements, the exact nature of how the process model
0950-5849/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2004.09.002

* The ideas underpinning this paper were originally presented at

REFSQ’03, 9th International Workshop on Requirements Engineering:

Foundation for Software Quality, Velden, Austria, 16–17 June 2003.

* Corresponding author. Address: Empirical Software Engineering

Program, National ICT Australia, Ltd, Level 1, Bay 15, Locomotive

Workshop, Australian Technology Park, Garden Street, Eveleigh, NSW

1430, Australia. Tel.: C61 2 8374 5522; fax: C61 2 8374 5520.

E-mail addresses: karl.cox@nicta.com.au (K. Cox), kphalp@bmth.

ac.uk (K.T. Phalp), steven.bleistein@nicta.com.au (S.J. Bleistein), june.

verner@nicta.com.au (J.M. Verner).
maps to subsequent requirements activities is less clear.

Some authors have suggested what might be termed

‘process approaches’ [3] to development methods, but

these tend to adopt particular design tactics, where the

process model replaces more ‘popular’ design notations.

Others have attempted to examine how process models

might map to existing approaches, for example, mapping

process models to formal approaches [4] or more latterly, to

use cases [5]. Although there is merit in these approaches,

one of the problems is that in methodological terms they are

implementation methodology dependent. That is, they

assume a particular design approach, whether process

driven or more conventional, such as the UML [6].

It would be particularly useful if process models could be

used to help partition and inform requirements, without

assuming a particular subsequent approach to design. It is

only upon identification of the requirements problem that
Information and Software Technology 47 (2005) 319–337
www.elsevier.com/locate/infsof

http://www.elsevier.com/locate/infsof


Fig. 1. Elements of problem frames.

K. Cox et al. / Information and Software Technology 47 (2005) 319–337320
anything about the problem is known and as such a

predetermined methodology might be inappropriate in

addressing the newly understood problem. This leads on

to the idea of combination with problem frames [7]. Indeed,

one of the premises of the problem frames approach is that

the problem ‘framing’ should suggest appropriate notations

for requirements analysis and specification [8]. In addition,

it is also clear that whilst simple single frame problems may

often be correctly identified, the framing of real-world

problems is often far from trivial [9], implying that today’s

increasingly complex systems will be more difficult to

frame.

Therefore, in this paper we attempt to show how process

models might be used to inform the derivation of problem

frames. This would then allow process knowledge to be

used within the requirements phase, and would aid the, non-

trivial, process of ‘framing’ problems.

One possible objection is that such process models may

not already exist. However, our experience with e-business

systems (and in particular web-based systems) is that the

organisations deploying them are often focussed on process,

and often view development of such systems as specifically

supporting business processes. Indeed, business models are

often viewed as a way of categorising types of e-business

applications [10]. For example, in the case study described

in this paper, the organisation had dedicated business

process analyst roles, and explicitly viewed process models

as the starting point for understanding business and,

subsequently, systems requirements.

Furthermore, it has been suggested that a key factor in

the success of the e-business enterprise is the extent to

which system requirements support business strategy

[11–15]. Clearly, process models are one way in which

this mapping from the strategic business view through to

requirements can be supported.
1.1. Introduction to problem frames

Problem frames capture and classify software develop-

ment problems [7,16]. A problem frame structures the

analysis of the problem within its problem space. It

describes what is in the real world and how the software

is intended to change or guarantee real-world conditions in

accordance with the requirements. With its emphasis on

problems rather than solutions, the problem frames

approach uses an understanding of a problem class to

allow the ‘problem owner’ with his or her specific domain

knowledge to drive the requirements engineering process by
selecting the appropriate development method specifically

designed to solve the problem type.

Problem frames are a means of understanding and

describing the problem context when software will provide

(some part of) the solution. As such they are akin to design

patterns [17] in that they provide a recognised problem

pattern that has a known solution method. However,

problem frames differ from design patterns since they

represent real world phenomena, as opposed to solution

phenomena.

Fig. 1 illustrates some essential elements of the

problem frames model. The real world problem context

provides us with information about the structure,

processes and tasks that are already true of the problem

domain. The requirement states which properties we wish

to be true given a built software solution, the machine

that will work within its real world context. The

connection between the real world problem context and

the machine is represented by the shared phenomena at

the boundary between the problem and the solution.

Shared phenomena can be data, events, commands and

states. Domains responsible for shared phenomena are

described through a syntax [7],

a: DO ! fxg

such that, at interface ‘a’, domain DO is responsible ‘!’

for {x} phenomena.

For most software problems there will be a number of

requirement ovals and a number of domains of interest.

Each requirement set connects a number of domains in two

ways. An arrowhead indicates that the domain is con-

strained by the requirement. That is, the machine must

guarantee that the state or behaviour of that domain satisfies

the requirement. A requirement reference, with no arrow-

head from requirement to domain, indicates that the

requirement refers to some phenomena in that domain [7].

Domains can appear a number of times in the problem

diagrams and problem frames through the principle of

projection. A requirement might be interested in only

certain phenomena or certain behaviour of a domain, given

the particular sub-problem addressed. In a different

projection, other phenomena in the same domain might be

of interest to the requirement for another particular sub-

problem.

Jackson describes two moods, in the grammatical

sense, to represent the problem context and the require-

ment [7]. Indicative mood represents everything in the

problem context that is given and will remain unaffected



K. Cox et al. / Information and Software Technology 47 (2005) 319–337 321
by the machine. Optative mood represents the way we

would like everything to be, given the construction of the

machine. This is the requirement. A requirement can change

the properties, states and behaviours of domains of interest

but cannot affect indicative properties. In this way, we can

get three descriptions. (1) The problem context, everything

in the application domain that is relevant to understanding

the problem and the scope of the requirements. (2) The

requirement, all that we would like the machine to bring

about in the problem context. (3) The specification, which

describes the shared phenomena that directly connects the

problem context to the machine in order to achieve the

requirement.

A problem diagram, containing the same elements as in

Fig. 1, describes a software problem showing the problem

parts consisting of problem context and the requirement.

Problem frames are derived through decomposition of

problem diagrams. Even though the software/hardware

system may consist of multiple devices or computers, for the

purpose of a problem diagram these are represented as a

single machine. Decomposing problem diagrams reveals a

greater level of detail, including separate distinct machines.

Jackson suggests five basic problem frames [7], though

states that this is not an exhaustive list. The problem frames

are:
†
 Workpiece frame, for example, a Petri net tool or text

editor.
†
 Commanded behaviour frame, for example, a lift

controller system where a human interacts with the lift

controller to call the lift, select which floor to travel to,

etc.
†
 Required behaviour frame, for example, a simple, time-

driven, traffic lights system.
†
 Information display frame, for example, a digital

speedometer display on a car dashboard.
†
 Transformation frame, for example, a file conversion tool

such as a PDF writer.

In an earlier work, Jackson [16] suggested a connection

frame. This might be a gas sensor monitoring oxygen levels

in a mineshaft safety system, the sensor being the

connection between the actual oxygen and the information

system reporting the levels of oxygen. However, this frame

was not included in his 2001 book. Jackson has re-labelled it

only a connection domain.

A key concept of problem frames is that the requirements

are not always at the interface of the machine. The

requirements are in the application domain and without

explicitly describing the application domain, the problem

context, it will be very difficult to identify the right

requirements. But a problem’s characteristics will not be

recognised until the problem context has been explored and

described. As such, adherence to only one particular

methodology regardless of the problem’s characteristics is

not recommended.
1.2. Related work on problem frames

Related work on problem frames has focussed on

identifying what techniques are most useful to eliciting

and documenting requirements and specifications once the

problem frame is known [8,18], and in attempting a

formalisation of the problem frames [19]. Current research

is exploring the role problem frames have with aspects of

software architecture [20,21]. These works view the

problem frame as already determined and present ways to

help subsequent development. Sikkel et al. [22] propose a

variant on the problem frame. They present a decision tree

to help determine what kind of business solution a company

might need, such as whether to opt for a COTS product or to

bolt on new functionality to the current system. Nelson et al.

[23] propose a suite of possibly finer-grained problem

frames that specifically focus on the geographic applications

domain. It is unclear whether these are really different

problem frames or variants on Jackson’s originals. Lin et al.

[24] address security threats by proposing what they call

abuse frames. These appear to be at a lower abstraction than

Jackson’s original frames and address specific non-func-

tional requirements that might arise in control or infor-

mation problems. Bray and Cox [25] have proposed a

further fundamental problem frame for simulation pro-

blems. There has even been a proposal to use problem

frames as the metaphor in extreme programming [26].

These works do not consider process modelling at all.

Indeed, there is, to our knowledge, no published research on

connecting process modelling and problem frames, save for

the original proposal which forms the basis of this paper

[27], and combined with goal modelling and Jackson

context diagrams to represent the optative and indicative

states combined of an e-business system problem descrip-

tion [13,14].

1.3. Domain modelling

Domain modelling in the sense of applying recognised,

accepted solutions draws similarities to the world of design

patterns [17]. Essentially, domain pattern models are

reusable patterns of problems. The problem frames

approach presents patterns that are wholly problem focussed

yet frame the problem with a known solution. There are

other domain modelling approaches that present similar

problem patterns and these vary in terms of abstraction and

context. For example, Rubenstein and Waters [28] intro-

duced what they called clichés for seven distinct problem

domains. At a different level of abstraction, Maiden and

Sutcliffe [29] present object system models from the

NATURE project. They defined 200 of these, each

representing different problem domain elements. Maiden

and Hare [30] show ways to determine which problem

category one requires—from those defined in the NATURE

project—by using a card slot approach. Coad et al. [31]

presented a number of Coad-and-Yourdon object patterns



K. Cox et al. / Information and Software Technology 47 (2005) 319–337322
and strategies for analysis modelling; these though appear

more at home in early design than domain modelling.

Fowler [32] presents a large number of analysis patterns,

described in a hybrid object-oriented modelling notation

specifically for the financial domain. Robertson [33]

describes how requirements process patterns can be derived

from use cases/events to enable requirements chunking for

systems construction with tight focus on the business

problem. We are unaware as to the uptake and/or success of

any of these approaches in an industrial setting. In other

closely related areas, this kind of problem, as opposed to

solution, pattern approach is showing itself to be of

importance to wider business success, for instance, at the

enterprise architecture level [34], and standard as well as

e-business patterns [10,35,36].
1.4. Role activity diagrams

As an exemplar notation to describe process models we

use role activity diagrams [37], a well-regarded process

modelling notation. A role activity diagram (RAD) is used

to describe business processes that can involve actions and

interactions among roles. Roles can be humans, departments

and organisations, as well as software and hardware

systems. A RAD provides an excellent means of describing

dependencies between roles in organisations that work

discretely and in unison to achieve a goal. A RAD has

various components, the most common of which are

illustrated in Fig. 2.

All roles start in an initial state. For example, role A

starts in an initial state and then has an event, an action, ‘do

work’, which is independent of other roles. On completion

of the work, the role would be said to have moved to a new

state of work completed. Although states are often omitted,

as in Fig. 2, a formal view would be that the event, and

action of role A, has a pre-state of ‘initial’ and post-state of

‘work completed’. (We have kept the states intact in our

case study process model, found in Fig. A.1.)

Some work is then delegated to a colleague. This is a

shared event. Although the mechanism of delegation is

immaterial, the result is that both roles involved move to the

state of work delegated. These shared events are termed
Fig. 2. Elements of a role activity diagram.
interactions. Although there is no sender and receiver as

such, role A is said to initiate (be the active role) whilst role

B is passive in this interaction. Role B is then in a state to

independently ‘do work’. Role B then ‘returns work to

colleague’, role A, who is in a state to receive it and so on.
1.5. Purpose of this study

Problem frames are becoming an established approach

within the academic requirements engineering community,

witness the first International Workshop (IWAAPF) at ICSE

2004 [38]. The approach is now taught as part of

undergraduate and postgraduate requirements engineering

at several Universities, and forms part of an analysis and

design method, called problem domain oriented analysis

[18]. Despite this, to our knowledge, there are no published

industrial studies on the use of problem frames. There are no

studies that attempt to apply problem frames to a complex

domain, such as an e-business system. Therefore, we had no

idea whether it would be useful to apply problem frames to a

real industrial project, nor how easy it would be to apply.

This led to our first research question,
RQ 1: Can the problem frames approach be applied to

complex, industrial projects?1

Those studies of problem frames that have been

published, as reported in Sections 1.1 and 1.2 and also in

[38] with the exception of [12,14,15] either describe simple

theoretical case studies, or small, well understood, classical

software engineering exemplars.

Problem frames examples, as discussed by Jackson in his

books [7,16], and others [8,18] have simple starting places

to begin a problem domain-oriented analysis. However,

complex systems in real industrial settings rarely have

things so easy. This makes it difficult to know where to

begin a problem frames analysis and leads to research

question 2,
RQ 2: Where is a good starting point to begin a problem

frames analysis in the context of the case study domain?

A simple and entirely practical approach was taken to

research question 2. We took the developed process models

as our starting point, or in other words, our problem

boundary, because this is where our customer saw their

problem boundary. They presented us with very simple

process models that described the basic process that we have

extended and refined, as described in this paper.

We worked on the project as contracted requirements

engineers as part of the development team, not as academics

conducting an isolated study. Thus, the subject matter
1 Note that better results might have been obtained through a different

approach. However, our study addresses problem frames and not another

approach, so we can only comment upon the success of this particular case.



K. Cox et al. / Information and Software Technology 47 (2005) 319–337 323
reported in this paper is from a live, real world project that

addressed a real business problem. Thus, in this paper we set

out to apply problem frames to a complex industrial context,

that of development of part of an e-business system. For

pragmatic reasons we considered that one way in which this

may be aided is to use existing process information, which

we present through role activity diagrams, to guide the

framing of the problem by providing a starting point for

describing the problem context.

The major contribution of this paper is that it is, to our

knowledge, the first reported application of problem frames

in an industrial project. The paper also contributes a

potential starting place to begin a problem frames

analysis—process modelling—and means by which to

connect process models to problem frames. The paper

critically evaluates the problem frames approach, indicating

that other problem frames might be required for e-business

systems on top of the existing frames. Another contribution

is the derivation of requirements from process models.

The paper takes the following form. Section 2 introduces

the industrial case study, thus placing this work in the

context of a re-engineering problem for what is an

e-business system. Section 3 briefly discusses equivalence

of role activity diagrams to context diagrams. Section 4 then

presents our proposed approach for mapping to problem

frames. Section 5 provides descriptions of that mapping in

the case study. Section 6 discusses validity threats to the

approach. Section 7 discusses the approach and the

implications for problem frames in light of the findings.

Section 8 draws conclusions.
2. Background to the industrial study

The case study involves the re-engineering of one

important process for part of a wider e-business system

built initially by a small start-up company but now owned

by a global financial organisation. We define e-business as

the ‘marketing, buying, selling, delivering, servicing, and

paying for products, services, and information, primarily

across nonproprietary networks, in order to link an

enterprise with its current and target customers, agents,

suppliers, and business partners’ [10]. An e-business system

enables this. In our specific case, the e-business system as a

whole is a financial system that allows customers to buy and

trade stocks and shares, as well as conduct other financial

activities, across the Internet. The financial partners are the

company itself (now a global organisation), a UK high street

bank, a stock brokerage company and a credit checking

agency. Our case study is a real world example in that we

conducted contractual work on the project to address the

company’s requirements problem. We were thus working as

engineers rather than academic researchers.

To understand where the major problem areas for the

newly proposed system lay, we first developed role activity

diagrams (see Fig. A.1). The process models were derived
from simpler process models developed within the company

by a business process analyst who was also acting as project

manager on this project. The role activity diagrams were

also derived from requirements elicitation activities, such as

interviews, observations, company documentation, formal

validations and informal communications with stake-

holders. The process models were correct and consistent

with the needs of the company and were as complete as

considered necessary by those working on the project, such

as the project manager, development manager, systems

analyst and company vice-president. Full validation of the

process models can be found in [39]. We had to understand

the system’s use from two viewpoints, (a) potential

customers applying for accounts and (b) the print room

staff as they access the system in order to print and post

application packs to customers. To further define what kind

of sub-problems we might have, we decided to use problem

frames. As has been outlined in the Introduction, we saw

that problem frames had significant potential, but we were

concerned that we might have problems applying the

approach on a live project effectively. Therefore, we

chose to use the process models to guide the use of problem

frames (research question two). This makes it necessary for

us to explicitly state how the process model would be used,

and then to attempt such an application (Sections 4 and 5).

Our experience of forming, but mostly using, such an

approach within the industrial context is reported in the

remainder of this paper. However, we now give further

background to the specific problem that we wished to tackle.

The software company itself is somewhat typical of its

type in that documentation is kept to its barest minimum

[40]. In our case, the company had no requirements or

design documentation. However, we did have full access to

the system and its test site, which allowed us a deeper

understanding of the product itself. As has been stated, we

did have access to data describing the process.

The existing system is an online, real time, financial

product that allows customers to open stock market trading

accounts, later housed at a high street bank, buy and sell

stocks and shares in real time and also to open/transfer

government bond investment accounts. The original system

contained three servers, and an unstable, poorly designed

access database meaning a number of unnecessary inter-

faces between the various elements of the system—legacy

servers that added unnecessary complexity to the process.

Our first task was to try to understand the purpose of the

product so that a re-engineering of its processes could be

achieved.

A further problem was that legal requirements, at the

time of the project, forced the company to obtain hand-

written signatures from their prospective customers. As

such, the company has an in-house print room that prints

individual applications. These are called pack types, where

different types of application are labelled under different

packs; the print room can only print one pack type at a

time—an aim is to reduce the different types from 21 to 2,



K. Cox et al. / Information and Software Technology 47 (2005) 319–337324
making the printing process easier. Pack types contain all

relevant information about the customer for the account

type created, for sending to the customer for immediate

signature. One important aim was to improve the lot of the

print room employees by making the task of printing

applications as simple as possible. Our specific remit was to

redesign the system around the following three constraints:
C1. The print process must be able to print and post up to

1000 customer applications per day.

There is no proposed increase in printers or employees.

As such, the software design will have to ease the print

process by reducing pack types and make printing of

different packs simpler.
C2. The selection of printing jobs must be more efficient

than the current system.

The current process is very labour intensive and open to

much human error. It has been suggested that the generation

of print jobs and the selection of print trays should be

automated. Automation is perhaps a long-term goal and not

part of the suggested solution in this project.
Fig. 3. Simplified role activity diagram of actual product process model (see

Fig. A.1).
C3. The software design of the application process has to

facilitate more effective generation of pack types to allow

easier printing of applications.

This constraint relates to the internal design of the system

and is beyond the scope of this paper. As such it will not be

discussed further here, though [39] provides a complete

description of the case study.
3. Process models and context diagrams: equivalence

of information

Many companies have process models to describe their

systems. However, within e-business the process view is

even more vital, since for many the e-business system

directly supports the business process. Indeed, for some

organisations the e-business system may even be their core

business, and for others the development of such systems

forms an integral part of their business strategy. For

example, within the organisation described in this case

study, business analysts had a dedicated process modelling

role. Therefore it seems appropriate to understand the

problem surrounding the re-engineering task by describing
Table 1

Mapping role activity diagram to context diagram

Role activity diagram Jackson context diagram

Role Domain of interest/machine

Interaction Interface

Action –
context diagrams from the process models because accord-

ing to the problem frames approach [7] describing context

diagrams is the first step to identifying problem frames.

Indeed, moving from process models to context diagrams is

a recommended approach [41]. Such a mapping is

straightforward. Table 1 shows the components of both

diagrams and how they map. However, the information

described in a Jackson context diagram [7] is similar to that

described in a process model, just described in a different

way.

As an example, Fig. 3 describes a simplified role activity

diagram for the process of applying for an online share

trading account; the unabridged role activity diagram is in

Fig. A.1. This is mapped to a context diagram in Fig. 4.

Essentially, Figs. 3 and 4 are the same. It can be seen that
Fig. 4. Jackson context diagram.



Table 2

Interfaces on the context diagram

Interface Description

A CU! {apply}, MA! {notification}

B PRS! {retrieve application}

C PRS! {print application}

D PRS! {post application}

E CU! {return application}

F CO! {activate account}

G MA! {new account details}

H BA! {welcome} Fig. 5. Process model of proposed approach.

K. Cox et al. / Information and Software Technology 47 (2005) 319–337 325
there is no explicit representation of the internal actions of

the domains that are vital to the success of the business in

the context diagram, though these might be derived from an

exploration of the interfaces between the domains of interest

as shown in Table 2. Since we already have a process model,

we consider this sufficiently rich to be taken as good

description of the problem context—we have no need to

repeat ourselves through context diagrams. So rather than

starting with context diagrams we can utilise existing

process models, or produce such models, to feed into the

framing.
4. Mapping from role activity diagrams to problem

frames

We propose initial guidelines to assist in the mapping

from role activity diagrams to requirements, which we

couch in the particular context of a known recurring

problem, called a problem frame. These guidelines emerged

as the project was conducted. They therefore evolved over

the course of the project and the refined version is presented

here. Though we would like to assert the approach’s

generality, we cannot since it was devised during the actual

case study and has only been tried on the case reported in

this paper. We can therefore only couch examples in terms

of the context of the problem we were attempting to solve.

The activities within this iterative approach are briefly

described:
0.
 Explore the problem context.
1.
 Produce (or revisit) process model (as role activity

diagrams).
2.
 Identify outcomes of interactions.
3.
 Identify domains from outcomes.
4.
 Identify potential rules that govern interactions.
5.
 Identify problem frames.

These are not strictly sequential activities, though some

constraints apply. Hence, we take it that step 0 has either

already happened or must happen first and that step 1 is

dependent upon it. Similarly step 2 is dependent upon step 1,

and step 3 upon step 2. Step 4 clearly involves much

interaction with step 2, though technically could proceed as
a parallel thread. Step 5, the final step of the suggested

approach, is, of course, dependent upon all prior steps.

Fig. 5 represents the suggested approach as a simple process

flow diagram.

The following sub-sections describe each activity (or

step) with an example from the case study. Section 5 then

describes further application of this approach to our

industrial case study.
4.1. Step 1. Describe role activity diagram

Of course, we have just argued that the great advantage

of utilising process models is that the context has already

been described (step 0). Thus, it is taken that such a

description may already exist. However, it may be

necessary to revisit existing process descriptions, and

rationalise these into another model, as we did on the

project. We find that role activity diagrams not only

provide useful process guidance, but may also be used to

guide identification of frames. We note that companies

might have existing process models in other notations; the

notation is not important as long as the information

captured in a process model is equivalent to a role activity

diagram. To begin this transformation from a complex

process model is difficult. Therefore, it makes sense to

partition the process model and at the same time abstract

away the finer details in order to identify the core problem

elements. However, it is important to have established a

detailed process model to act as a check that all ‘vital

elements’ of the problem have been considered. Of

course, abstracting away the hard or confusing parts of

the problem will only lead to an inadequate delivered

system.
4.2. Step 2. Identify outcomes of interactions

Step two identifies the outcomes of interactions between

roles. If we start at the beginning of the process (though this

is not necessary), we have identified the interaction ‘apply

for account’ since this is decomposed into a number of

specific events that the customer has to complete in order to

open an account. Exploration of this interaction suggests



Fig. 6. Possible outcome of interaction.

K. Cox et al. / Information and Software Technology 47 (2005) 319–337326
that the outcome is likely to be a new account application, or

in this case study, new account creation, as shown in Fig. 6.
4.3. Step 3. Identify potential domains from outcomes

As step three indicates, this outcome is then considered

as a potentially new domain. Each is asked:
†

2

(he

inta
Is the outcome something that will be used, altered or

referred to a number of times from different perspec-

tives? In other words, a persistent, domain of interest.

That is, it is not simply a transient outcome. In this

application, a customer account will be manipulated or

referred to through its lifetime by the customer, the bank,

and the print room staff in different scenarios.
†

Fig. 7. Domain taxonomy (adapted from Bray p. 99 [18]).
We use Bray’s domain taxonomy (Fig. 7) to determine

the type of domain we are dealing with [18]. This will

guide us in what problem frame this might fit.2 In the

above example, we can ask: does the identified customer

account domain change with time? The answer is yes,

since its state is updated with each transaction that

occurs. Therefore, it is not static but dynamic. The next

question is, does the domain change itself? For the

customer account, the answer is no. It can only change at

the behest of the customer, for example, through

transactions, and the bank by initiating direct debits,

setting interest rates, etc.

The types of domain shown in Fig. 7 are briefly described

with examples:
†
 Static. This might be a CD-ROM of an encyclopaedia. Its

state does not change over time.
†
 Inert. This state refers primarily to software files. Thus

when we have an inert domain typically we are referring

to something housed inside the machine: a design

domain (in the above example, a customer account).
†
 Reactive (predictable). An abstract data type can be

classed as reactive because it needs external stimuli to

alter its state but is self-modifying.
†
 Programmable. Most software applications are

programmable.
David Garlan presents a slightly different domain list to the one we use

also considers multi-dimensions and whether domains are tangible or

ngible) that could also be appropriate [42].
†
 Biddable. Human beings can be described as biddable

since they typically perform the required tasks but do not

necessarily do this. It is up to the human to follow a

command or not.
†
 Autonomous. These are domains that are self-governing,

such as the weather. They cannot be controlled and are

not entirely predictable, though they can be simulated

[25].

Knowing what type of domain we are dealing with will

help constrain the choice of frame to fit the problem into.
4.4. Step 4. Identify potential rules that govern

the interactions

Step four explores what rules are in place to control

interactions—these are the requirements. For instance,

when the customer applies for the account, they have to

enter required financial information, such as current bank

account details. Essentially, requirements are derived from

interactions in the process model and by an exploration of

the outcome of those interactions. However, this is not

always obvious. Since the financial domain is governed by

specific laws, companies working in this domain will have

what is often called a compliance department that makes

sure all software and, indeed, all requirements for the

proposed software are legal. Exploration of the process



Table 3

Charting the outcomes of the derivation process

Interaction Roles Outcome of

interaction

Domain

properties

Requirements Problem frames

Register Customer, web

machine

Registrant account Static R3. Customer enters particulars –

Apply for

account

Customer, web

machine

Customer account Inert R1. Customer enters particulars.

R2. Customer enters NINO (dependent on account

type)

Workpiece

Acceptance

notification

Web machine,

customer

Text message Static and

transient

R4. The customer should be notified of the success

of their application attempt immediately

–

Check credit Web machine,

credit checker

Data Static and

transient

R5. Credit worthiness must be automatically

checked through an official credit agency; the

response should take less than two seconds R5.

–

Send credit

status

Credit checker,

web machine

Data Static and

transient

R6. If a negative response, then display Sorry

message.

(if R6) Infor-

mation display

frame

Access pack

codes

Print room staff,

web machine

Access commands

(events)

Transient R7. Print room staff access the web machine to

locate the file ready for printing.

–

Prepare for word Print room staff,

web machine

CSV file Inert R7. –

Transfer to

Word

Web machine,

Word

CSV file Inert R8. The CSV file has to be transformed into a

printable, standard representation

Transformation

(Word mail

merge solution)

Organise

materials

Print room staff,

printer

– – – –

Print Print room staff,

Word, printer

File for printing Static R9. Pack types are printed so application forms can

be sent to customers for signing

Transformation

(printer driver

solution)

Collect printed

materials

Print room staff,

printer

Applications Static – –

Send for posting Print room staff,

post office

Applications Static R10. Applications are immediately sent to

customers for signing. (time constraint on signed,

returned applications of 10 working days)

–

Send forms to

customer

Post office, cus-

tomer

Applications Static R10. –

Return forms Customer, post

office, company

admin

Applications Static – –

Update machine Company

admin, web

machine

Customer account Inert R11. The customer’s account can only be activated

upon receipt of a completed and signed application

form, within the specified time frame

Workpiece (is

one requirement

sufficient for a

problem frame?)

Email/SMS new

trader

Web machine,

customer

Email/SMS text

message

Static R12. Automatically notify the customer upon the

successful activation of their account

Connection

frame (if an

SMS)

Inform bank Web machine,

bank

Customer account (as

an email, probably)

Static (as is a

copy of account)

R13. The bank is automatically given all newly

activated account details

–

Acceptance

message

Bank, web

machine, custo-

mer

Data, email Static R14. The company must inform the customer of

the bank’s decision to either accept or reject the

account

Connection

frame

Send account

material

Bank, customer Account materials:

cheque book, bank-

er’s card, welcome

pack, etc.

Real world (do

not fit the tax-

onomy since

they are not

software related)

– –

K. Cox et al. / Information and Software Technology 47 (2005) 319–337 327
model would prompt an analyst to consider if that under

study had to comply with legal regulations and laws. Other

requirements, such as some of those represented in Table 3,

come from standard requirements elicitation techniques

conducted while working on the project: interviews

and workplace observations with stakeholders as part of
the process model verification and validation process.

Example requirements are now described,
R1. A new account is set up by the customer upon

provision of all relevant banking information. We need to



K. Cox et al. / Information and Software Technology 47 (2005) 319–337328
know:

Customer full name;

Customer current address;

Account type required (see RXX for account types

and their necessary attributes);

Current bank account details.

R2. The customer must provide their national insurance

number (NINO) for opening a (UK) government bond

account.

R2.1 The NINO must be verified for its authenticity.
The machine steps the customer through a precisely

defined application procedure. Failure to provide the

required information will cause a halt in the application

procedure. Providing false information is against the law,

and it is a legal requirement that the company notify the

customer of this fact, which might be requirement R2.2, for

instance.
4.5. Step 5. Identify the problem frame

Step five then identifies the problem frame. From the

above example, the new customer account has been

identified as an outcome of the interaction ‘apply for

account’. The outcome is then assessed as to whether it is

persistent or transitive. If it is persistent then it will be

classified under the domain taxonomy so that we can

understand what kind of domain it is and where it fits with

potential problem frames. A further test of the permanence of

the domain is to see whether it meets the requirements—the

rules that govern this domain. In our example, this would be,

among others, legal requirements, for example, providing a

national insurance number for certain types of account,

financial requirements, providing all the necessary infor-

mation the account procedure demands, for example, the

customer’s current bank details and interface requirements,

guiding the process of the online application. Once the above

are determined, we can state: We have an interaction that

produces a customer account domain, which is persistent and

inert, reacts to external stimuli and is housed in the machine,

and satisfies the requirements that govern it. We, therefore,

have a workpiece problem frame as shown in Fig. 8.

In complex process models it also makes sense to organise

the domains, the interactions, outcomes of interactions, the

requirements and any problem frames into a table. In Table 3

the second entry refers to the above example.
Fig. 8. Workpiece frame.
5. The problem frames: examples of the approach

Further exploration of the interactions in the process

model will make this clearer, and will also provide some

answers as to the use and usefulness of the approach and of

problem frames themselves. Assuming a process model has

been developed, the next subsections describe the approach

in action for deriving problem frames. We limit ourselves to

a number of examples here for reasons of brevity, though

Table 3 provides details of all requirements and subsequent

frames derived from the process model.
5.1. Credit check

The interface connects the web machine and the credit

checker. The credit checker agent is a machine that rapidly

assesses the credit worthiness of the customer from the

information passed by the web machine. The outcome of the

interaction between the web machine and credit checker is a

data packet containing the customer’s information. This is a

point where it might be easy to misuse the problem frames

approach. For instance, if one explores the requirement, R5,

that the credit checker is sent the customer’s data and that

the credit checker then returns a ‘credit worthy’ or not

status, it is obvious that this interaction is about the

customer and the credit checker. A problem diagram might

look something like Fig. 9.

The first thing to note is the introduction of the customer

domain to the problem. The requirement is, after all, about

establishing the credit worthiness of the customer. The

requirement reference ‘a’ assumes the required problem

domain data needed to fulfil the task is provided by the

customer. This is provided to the web machine through

the specification interface ‘c’, by means of the events that

govern the entry of the data into the web machine. The

requirement ‘b’ constrains the credit checker to perform the

correct credit check and to provide accurate feedback, all

within a real time constraint of 2 seconds, R5 in Table 3.

The interface between the web machine and the credit

checker, ‘d’, provides the correct format for data sent and

the response that it subsequently receives. Since this meets

the requirements, the next question is to ask what kind of

problem frame this is.
Fig. 9. Possible problem diagram for ‘check credit’ and ‘send credit status’

interactions.



K. Cox et al. / Information and Software Technology 47 (2005) 319–337 329
†
 Is it a workpiece? Where is the inert domain, created by

the customer and housed within the machine? There is no

such domain.
†
 Is it a transformation problem? It is certainly the case that

the input to the credit checker is a lexical representation

of some information. However, no transformation takes

place. The information flows into the credit checker but

is not transformed into anything.
†
 Is it a control frame? We have a customer, therefore, this

must be a commanded behaviour frame? But what

exactly is being controlled? The customer is entirely

oblivious to the credit checker. Indeed, the credit checker

is a software machine that we only interface with. All we

do is feed it information and await a yes/no response.
†
 Is it an information problem? Yes, but is it an

information display frame? It is an event–response

problem, but with only one event and one response,

where the event asks for information based upon the data

in the event parameters sent. This is in essence what all

information systems are, though the task is the same each

time: provide credit information to perform a check. It is

only the information that changes with each new

customer. We can describe this therefore as an

information problem that will become an information

display frame if, and only if, there is a negative response.

See Section 5.2.
†
 Might it also be a connection problem? Yes, there is a

connection issue but this is a secure socket connection

between the web machine and the credit checker. This

does not fit as a connection problem frame.

This problem does not fit any of Jackson’s problem

frames. Therefore, we question whether we might need a

new problem frame that is appropriate for this specific

problem, all too common in this domain.

5.2. Send credit status

This is the response to the previous interaction (check

credit in Section 5.1) and it, too, is an electronic message

only. If it is a positive result for the customer then there is no

frame here since the customer is not informed of their

success, only that the application procedure continues.

However, if there is a negative response, R6, then some
Fig. 10. Information display frame.
information has to be displayed to the customer. This is an

information display frame. The problem frame looks like

Fig. 10.

The requirement for the credit checker ‘e’ is to determine

the accuracy of the customer’s credit worthiness. This is

beyond the scope of our problem so we can ignore it here; as

such it is referenced, not constrained, that is, no arrowhead.

The credit checker passes its negative response to the web

machine ‘f’, which, in turn, is displayed for the customer to

see ‘g’. The customer display is constrained to represent the

correct information ‘g’ from the credit check, hence the

arrowhead.

5.3. Prepare for word

This interaction is all about preparing to transfer the

selected CSV file to the Word application. The outcome of

the interaction is the selection and placing of the particular

CSV file, whose selection is dependent upon the pack type

selected for printing, in a position or state so that it might be

printed by Word, though Word is not part of this particular

interaction problem. Is the CSV file a domain of interest? It

is certainly manipulated over time and contains the

information necessary to enable the correct printing of

applications. What kind of domain is it? According to the

taxonomy it is an inert domain. Its state does change since

its position in the printing process changes when an external

entity manipulates it; its representation might also alter at

some point in the printing process. Does the outcome meet

the requirement? Yes. Since R7 is about locating and

selecting the right CSV file for printing, the outcome clearly

meets the requirement. Is there a problem frame here?

Fig. 11 describes the problem.

The CSV file is a realised domain—it is internal to the

machine. This is denoted by the stripe on the left of the

domain box; a realised domain can also be represented a

black dot from the machine to the domain, as in Fig. 8. The

interfaces ‘h’ are the events and actions that the print room

staff commits at the interface of the machine to locate and

select the CSV file. The requirement constraint and

specification ‘i’ states that the web machine must make

the CSV file visible and selectable to the print room staff.

But is this a problem frame? It could be a variant of the

commanded behaviour frame where the CSV file is the

domain being commanded. As an inert domain it can be
Fig. 11. Possible problem diagram for ‘prepare for word’ interaction.



K. Cox et al. / Information and Software Technology 47 (2005) 319–337330
controlled since its state can change. But since it is internal

to the machine and not some external reality, it seems that a

problem frame does not fit in this instance.

5.4. Transfer to Word

The transfer of the CSV file to Word is done on the actions

of the print room staff so is a continuation of the previous

interaction. The outcome of the interaction is listed in Table 3

as the CSV file. This is the object of the interaction, rather

than the outcome. However, it is a close enough approxi-

mation. We know that the CSV file is an inert domain. What

is the requirement? R8: the CSV file has to be transformed

into a printable, standard representation. Since this is a re-

engineering problem, many of the solutions are already

known. In this example, it is known that Word can mail

merge certain document types, in our case the CSV files, and

therefore the solution presents itself without any effort on our

part. There is the possibility of a transformation frame. The

CSV file acts as the input domain—it is static and lexical,

which fits the properties of the transformation problem. The

output is a merged document and it must meet the

requirement of representational format, that is, the data in

the output domain, a printable Word document, must map

exactly to the data of the input domain (CSV file). The

transformation machine, in this instance is the Word

application. The transformation function, mail merge, is

not automatic; user events will govern the mail merge. The

transformation frame looks like Fig. 12.

5.5. Print

This interaction involves three roles: (1) print room staff,

who give the command to print applications, (2) the Word

application, which receives that command and then

processes it until the outcome is a file sent to (3) the printer,

which receives the print file, queues it and prints it. The

outcome of the interaction between the print room staff and

Word is simply a shared event: the print command. An

outcome of the interaction between Word and the printer is a

file to be printed. The printer driver will convert the file into

a printable format. The requirement is simply that the pack

type selected for printing is printed, as stated in R9. This is a

transformation problem though it is unlikely that printer

drivers are programmed from scratch any more it is still
Fig. 12. Transformation frame for mail merging the CSV file.
important to identify the problem frame. The outline of a

transformation frame is shown in Fig. 12.
5.6. Send for posting/send forms to customer/return forms

These three interactions are combined because they are

part of the same sub-process for our purposes. The print

room staff pass the printed applications to the post office for

distribution to customers. These are important interactions

because there is a time constraint on how long the customer

account can remain ‘live’ without being formally agreed to

by the customer. Requirement R10 states that applications

are immediately sent to customers for signing with a time

constraint on signed, returned applications of 10 working

days. Thus we should be concerned with the efficiency of

the post office as a possible hindrance to the delivery of the

applications. The return forms interaction is again depen-

dent upon the post office, not shown in Fig. A.1, so time is

an issue. However, since this is part of the problem domain

removed from the machine there is no standard problem

frame to describe. It is uncertain whether to impose a

requirement upon the customer since their action is, at best,

biddable. The accompanying documentation clearly states

that if the customer wants their account activated they must

sign and return the enclosed forms within 10 working days

of setting up their account—the date of which is supplied in

accompanying documentation.
5.7. Update machine

Upon receipt of a signed application form from the

customer, the company’s administrators have permission to

update the status of the customer’s account to one of

‘active’. This means that the customer can now start to trade

stocks and shares or invest in government-guaranteed

bonds. The outcome of the interaction is the activation of

the customer’s account, which we know to be inert—its

state changes but only at the command of the customer,

company or bank. Therefore it is a domain of interest. The

web machine carries out the updating process on the

command of the company administrator. The two roles

in the interaction are also domains of interest. The

requirement states that the administration staff activates
Fig. 13. Problem diagram for updating the status of the customer’s account.



K. Cox et al. / Information and Software Technology 47 (2005) 319–337 331
the customer’s account so that trading can commence, only

upon receipt of a correctly completed and signed application

form received within the stipulated time frame of 10

working days from the account being opened, R11. What is

the problem frame? The problem contains these domains:

customer account, company administrator and the web

machine. The problem diagram is shown in Fig. 13.

An inspection of the requirement shows that ‘j’ consists

of events that the company administrator does to drive the

updating of the account. Interface ‘k’ is the requirement

constraint—that the customer account be activated, and

nothing else. Specification interface ‘l’ is the command

from the web machine to the customer account to change its

state. Interface ‘m’ is the commands used by the company

admin to make the update and also the feedback given by the

machine to the admin.

What kind of problem frame is this? It appears to be a

workpiece problem, since the customer account’s state is

now altered. However, there is only one requirement. The

question then arises, can we have a problem frame for one

requirement? We do not know. The entry in Table 3

shows the frame name, but questions whether this is

worthwhile.
5.8. Email/SMS new trader

This interaction originates from the web machine and

informs the customer of the successful activation of their

new account, stating that they can commence trading. The

outcome of the interaction is an email or SMS text message

sent to the customer’s mobile phone. Does this constitute a

permanent domain of interest? Yes, since the message might

be stored by the customer as a personal record. However, the

customer is not required to store it, so it does not constitute a

software development problem in that sense. What is a

problem is the actual notification itself. The machine must

generate a message and send it. The means of notification

are dependent upon the details about the customer stored in

the machine database. The requirement is only about the

sending of the message (R12). A closer examination of the

problem shows that the web machine must automatically

notify the customer via email and by SMS if the customer

record has a mobile phone number. How this is actually

done would need further investigation. For an email

message we can assume that the message is sent as a data
Fig. 14. Connection problem frame.
packet via a telephone communication network. For SMS,

we might need an external party, an SMS generator, who is

informed automatically via an email from the web machine

that they should SMS the relevant customer phone with

the message, CS. This would become a connection problem

in Jackson’s earlier discussion [16] and would look

something like Fig. 14.

This is a simplification, of course, because the SMS

generator would send the message via a series of mobile

phone transmitters (cells) until the message reached the

customer’s phone, so there might be more connection

domains between the web machine and the customer’s

phone. But this is out of our problem scope and we would

not document it.
5.9. Inform bank

Despite the activation of an account by the web

company, and that the customer can begin to trade or

transfer funds online, the company still has to inform the

high street bank of account activation. The bank should

then open an account for the customer to store their

trading/transferred funds. However, as the process model

in Fig. A.1 shows, the bank conducts its own credit

validation checks on the customer and can refuse to

manage the customer’s account. This appears to be a

somewhat unusual arrangement. If the customer is

rejected by the bank, the web company can still legally

maintain the customer’s account but would probably need

further proof of the customer’s solvency, such as recent

utility bills. Since this had yet to occur when we were at

the company (the bank had yet to reject a customer), it

was uncertain what would really happen if the bank were

to refuse (that’s why the customer’s state is documented

as ‘? Alternative Active’ in the process model). In any

case, the interaction is the transference of the customer

account details. Is there a persistent domain created? Yes,

the customer account, an inert domain, but in this

instance, it is in fact, a lexical representation of that

domain since the state of the account will not alter as a

result of the interaction and is therefore static. The

interaction and outcomes meet the requirement that the

bank be passed all activated customer account details via

email, requirement R13. Is there a problem frame here in
Fig. 15. Problem diagram for requirement 13.



K. Cox et al. / Information and Software Technology 47 (2005) 319–337332
the transference of the account details? There is nothing to

control, no document to create/alter as in a workpiece and

nothing to transform. But the bank does need the

customer’s particulars; this is an information notification

problem as shown in Fig. 15.

The customer record is a realised domain and is

constrained by the requirement p, to contain all of

the information necessary to satisfy the bank, when it is

received (o). The web machine retrieves the record data

(q) and sends it to the bank (n). It is uncertain what type

of frame this is. A realised domain would fit a

transformation frame or a workpiece, but clearly this is

not an exact fit. The problem is about information

passing, something that is very relevant to the e-business

domain. Does this then fit an information display frame?

This too is unlikely since the concern is about

notification, a transference of information, not how the

bank displays it.
5.10. Acceptance message

This interaction is the combination of messages sent

from the bank to the web machine either accepting or

rejecting the customer account, and the subsequent passing

of this message to the customer: four interactions are shown

but only two occur in any one instance, either accept–accept

or reject–reject. The outcomes of the interactions are either

a data packet or email from the bank to the web system and

email to the customer. These outcomes are static, since they

are not manipulated or used in any way. There are no

domains except the three roles in the process model. The

requirement R14 stipulates that the company inform the

customer of the bank’s decision. This is a message-passing

task that does not easily seem to fit one of Jackson’s current

problem frames [7] but does appear to be a connection

problem [16]. Fig. 16 shows the problem frame.

Interface ‘r’ represents the message itself. We are making

an assumption about this information and might have to

reconsider whether the message is a domain of interest in its

own right. The requirement ‘s’ expects the bank to inform

the web machine of the customer’s status with the bank (r).

The web machine itself is constrained to deliver the correct
Fig. 16. Connection frame for requirement 14.
message, ‘t’. The requirement ‘u’ states that the correct

customer should receive the message.
6. Threats to validity

Our primary aim was to provide a solution to the

industrial problem described in Section 2 so that the

company could provide a faster service to their

customers and make the print room staff jobs more

efficient. The approach described in the paper arose from

the circumstances of the project. The project was real.

The end result was a released, updated software product.

We conducted what amounts to action research whilst

working as contracted engineers on this project. Our

problem was a lack of understanding of the current

software and application domain. It was therefore

necessary to figure out what the requirements were. A

sensible way to do this was to start with the simple

process models developed by the business analyst and

work from there. Problem frames were chosen as they

propose a means of describing requirements problems

and present a way to neatly decompose the larger

problem into more manageable sub-problems. The fact

that not everything worked perfectly with our proposed

approach is part and parcel of real world software

development [43]. But the fact that the company

accepted our work and completed the project is

validation enough. As one of the software developers

stated, “[It is] good that everything is validated from the

business [process] model through to design. We can see

the clear progression from one phase to the next. We can

specify what we want very clearly.” The company’s

founder and vice-president positively commented, “Over-

Overall [the] process [is] well worth considering for the

IT department but it’s more likely each department area

will take what’s useful to them and ignore the rest.

Everyone can take little bits of this method for

themselves and use that.” The project manager stated,

“[We] want.[the] work carried out [by the authors] to

present as a full documentation set to the business.” One

developer commented that our approach is “requirements

driven rather than data driven and that’s not often how it

works here. It would be better to apply the [authors’]

method because specification is carried out and the IT

department are wasting time trying to specify uncertain

requirements” [39].

Discussion of sample is not entirely relevant in this case,

since this was action research conducted on a real project.

We were pragmatic in our approach since we had deadlines

to meet. Validation came from company employees

involved in the project. We do not claim the approach to

be generalisable. We can only state what we found in this

particular case though we do assert where we think there

might be wider issues for the problem frames approach, as

described in Section 5. There are also standard threats to



K. Cox et al. / Information and Software Technology 47 (2005) 319–337 333
qualitative data validity: objectivity and reliability [44]. We

address these threats below.
6.1. Objectivity

Objectivity concerns the biases that researchers might

introduce into a study through their very presence or

hidden agenda. We took on an action research role in the

project since we had been asked to provide requirements

engineering expertise by the company on a critical, live

project. As such, we were deeply involved in achieving a

successful outcome. The authors’ intention for the project

was not to test the proposed approach nor to evaluate

problem frames, but rather to meet the project’s objective

of addressing a real business need: improving the

application process for both potential customers and the

print room staff team through a re-engineering of the

existing product. As we view the project findings of

importance to the software community, especially those

interested in problem frames, we have provided an account

of our findings here.

We show that there are some concerns with the problem

frames approach (see Section 5), implying that further

frameworks, methods or techniques will need to be devised

to provide a starting point for problem domain oriented

analysis, dependent upon the problem domain. We propose

process modelling as one such potential starting point for

the e-business domain.
6.2. Reliability

Since the qualitative researcher influences the research

under study, a reasonable question to ask is, would someone

else conducting the same study come to the same

conclusions? This is impossible to say. It is well known

that when conducting a software problem analysis, every

analyst will emerge with a different solution, each

potentially as equally valid as the next. However, given

that there are a small number of domain types and a small

number of problem frames it is entirely possible that the

same problem frames will be discovered. However, for this

to hold, the level of abstraction must first be understood and

agreed. The process model in Fig. A.1 is envisioned, i.e. a

process model for the proposed system rather than actual

system. This means that actions within roles and inter-

actions between roles might well be different if developed

by another researcher, possibly leading to different problem

frames. However, the process model and requirements

elicited were in part derived from the existing process

models and system, which provided a reliable validation

mechanism. We validated the models with analysts,

developers, managers involved on the project, and also the

company vice-president. Validation meeting notes are

numerous and can be found in [39].
7. Discussion

This study sought to investigate the application of

problem frames within an industrial context. Partly to aid

this process we chose to use process models as a way of

helping to frame the problem. This was achieved by

devising a simple set of stages in moving from process

model to problem frame. However, the question must arise

as to the validity of the approach. It was not always possible

to elicit problem frames from the process models. Whether

this is a fault with our approach, or indicates the more

general difficulty of application of problem frames within

our industrial context, is not clear.

Indeed, one might argue about the general validity of

problem frames for e-business systems, and clearly more

work on industrial application is required. The wealth of

information gleaned that provides the problem context for

the requirements is invaluable and can only be of benefit

to the task of relating business process to its supporting

systems. However, as stated, this is the only reported

study that we know of which has examined the

application of problem frames on a live industrial project.

Certainly it would be useful to see how problem frames

could be applied without use of process models. However,

we argue that e-business developers are typically process

focussed, and hence process modelling seems to be a

natural first step.

Though much analysis has been done in this case study,

and feedback from stakeholders suggests the use of the

process models as a means of describing the product and

providing traceability was most welcome, the problem

frames approach was not accepted readily. The reason for

this was, no doubt, unawareness of problem frames and

doubts as to its usefulness in this particular problem. The

company knew all about the domains and their properties.

They understood what the problem was but needed it to be

mapped out in a clear way:

“It would be good to model every current system in IT

with [the authors’ approach] so we have details of

everything—if we took this as a project in itself—and

then every new project could expand on the model, rather

than straight on the actual system.”—IT development

manager [39].

Though it might appear that we are suggesting that

Jackson’s five problem frames are not always appro-

priate to this particular e-business problem, this is in

fact recognition of the utility of problem frames in

general. As Jackson states, the problem frames approach

is not a panacea [7]. This was never Jackson’s intention,

in fact, quite the opposite. The more generally

applicable a method/tool/technique claims to be, the

less likely it will help in any particular problem. We do

not claim that the problem frames approach is entirely

inappropriate to the e-business domain, either. We only



K. Cox et al. / Information and Software Technology 47 (2005) 319–337334
claim that we reached certain conditions where a

recognised problem frame did not fit. This is not

surprising when one considers the history of problem

frames. The five frames emerged from traditional

software engineering problems, such as control systems.

We suspect that e-business problems are not always the

same kind of problem as these.
8. Conclusions

This paper proposes a way to derive appropriate

requirements from process models and couch them in

terms of Jackson’s problem frames. Therefore, we can

consider the problem frames derived from the process

model. Key to eliciting further domains, vital to

the identification of the problem frames, is exploring

the interactions between roles for outcomes (potential

domains) and rules (potential requirements or constraints

governing use or control of the domains). We identified

two research questions in Section 1.5:
RQ1: Does the problem frames approach scale to

complex, industrial projects?

Of the 14 requirements identified, only seven of

Jackson’s problem frames appear to fit. Two of these are

transformation frames and are already solved by existing,

standard software—and as such do not really need to be

considered further. Two other frames are connection

frames. However, Jackson does not consider the con-

nection problem frame in his latest book [7], bringing

into the question the validity of the identified frame,

though they fit in our problem. Perhaps we need to

reconsider the usefulness of the connection problem

frame in the e-business domain. The two other frames

are workpieces. One of the frames serves only one

requirement—though there will be other occasions when

the administrators will alter the contents of the

customer’s account, for instance, when there is a change

of the customer’s address. As such, this provides the

workpiece with more persistence and we suggest this

qualifies the frame as valid since it is only shown as one

instance of usage of all the occasions that the company

administrator may need to alter the state of the account.

On a number of occasions we derived problem diagrams

but could not decide on the appropriate frame since one did

not seem to fit. We therefore consider it quite possible that

Jackson’s frames are not always suitable to the e-business

system domain. Indeed, we suggest that Jackson’s frames

have emerged from fairly traditional software engineering

problems. The e-business domain has its own distinct

characteristics: there is a lot of electronic message passing;

the tools of e-business are standard hardware devices like

servers and PCs. To couch a problem as an information

display problem frame when we are referring to a PC
monitor as the display domain, seems a little too simplistic

in this particular domain. We thus suggest that the key

benefit of the problem frames approach is the approach

itself, that is, as a mechanism for exploring and describing

the problem domain and the requirements, not necessarily in

the problem frames themselves. Critical to the future

success of problem frames though, should be the ability to

arrive at the appropriate problem frame that is suitable for

the domain where one finds one’s problem. The second

research question was,
RQ2: What is a good starting point to begin a problem

frames analysis in the context of the case study domain?

It is critical that one bounds the problem to its

appropriate depth into the real world [7]. However,

where that starting point is for e-business systems was

uncertain, though recent work suggests business strategy

as the right place to start for this domain [11–15]. Since

the company described their problem boundary through

simple process models, we chose our starting place

through more complete process models, drawn as role

activity diagrams. This provided a problem context and,

hopefully for us, a prelude to problem frames. However,

getting from a process model to a problem frame was not

straightforward so we derived the approach described in

this paper.

Though it is shown that although the approach appeared

to show some promise [27] in its earliest phases and perhaps

at its most abstract, a more detailed analysis reveals that not

many problem frames can be gleaned from a number of

interactions for the system studied. A means of improving

our derivation method would be to add an extra step before

5. Once the requirements have been identified we should

first describe the context for that requirement via a problem

diagram. Only from there should we think about the

appropriate problem frame, if we consider it will bring any

added benefit to do so.

It is our intention to apply the approach to further

industrial studies in the e-business domain. We also would

like to then compare the problem frames approach with, for

instance, a scenario-based approach, for deriving require-

ments, again in an industrial setting.
Acknowledgements

We are grateful for the comments of Mark Staples of

National ICT Australia Ltd on a draft of this paper. karl cox

is funded through an Australian ARC Linkage Grant

RM00857.
Appendix A

Fig. A.1.



Fig. A.1. Role activity diagram for envisioned product process.

K. Cox et al. / Information and Software Technology 47 (2005) 319–337 335



Fig. A.1 (continued)

K. Cox et al. / Information and Software Technology 47 (2005) 319–337336
References

[1] P. Henderson, Software processes are business processes too, Third

International Conference on the Software Process, IEEE Computer

Society Press, Reston, VA, USA, October 1994, pp. 181–182.

[2] K.T. Phalp, The CAP framework for business process modelling,

Information and Software Technology 40 (13) (1998) 731–744.

[3] B. Warboys, P. Kawalek, I. Robertson, Business Information Systems,

McGraw Hill, 1999.

[4] G. Abeysinghe, K.T. Phalp, Combining process modelling methods,

Information and Software Technology 39 (2) (1997) 107–124.

[5] K.T. Phalp, K. Cox, Guiding use case driven requirements and

analysis, Seventh International Conference on Object-Oriented

Information Systems, Springer, LNCS, Calgary, August 27–29,

2001, pp. 329–332.

[6] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software

Development Process, Addison-Wesley, Reading, MA, 1999.
[7] M. Jackson, Problem Frames, Addison-Wesley, Reading, MA,

2001.

[8] B. Kovitz, Practical Software Requirements, Manning, 1999.

[9] K. Phalp, K. Cox, Picking the right problem frame—an empirical

study, Empirical Software Engineering Journal 5 (3) (2000)

215–228.

[10] P. Weill, M. Vitale, Place to Space: Moving to eBusiness Models,

Harvard Business School Publishing, 2001.

[11] S. Bleistein, A. Aurum, K. Cox, P. Ray, Strategy-oriented alignment

in requirements engineering: linking business strategy to requirements

of e-business systems using the SOARE approach, Journal of

Research and Practice in Information Technology 36 (4) (2004)

259–276.

[12] S. Bleistein, K. Cox, J. Verner, Problem frames approach for e-

business systems, IWAAPF’04, First International Workshop on

Advances and Applications of Problem Frames (an ICSE’04 work-

shop), Edinburgh, 24th May 2004, pp. 7–15.



K. Cox et al. / Information and Software Technology 47 (2005) 319–337 337
[13] S. Bleistein, K. Cox, J. Verner, RE approach for e-business advantage,

REFSQ’04, 10th International Workshop on Requirements Engineer-

ing: Foundation for Software Quality, Riga, Latvia, 7–8 June, 2004.

[14] S. Bleistein, K. Cox, J. Verner, Requirements engineering for e-

business systems: integrating Jackson problem diagrams with goal

modelling and BPM, APSEC 2004, 11th IEEE International Asia-

Pacific Software Engineering Conference, Busan, S. Korea, 30th

November–3rd December, 2004.

[15] S. Bleistein, K. Cox, J. Verner, Modelling business strategy in e-

business requirements engineering, eCOMO’2004, Fifth International

Workshop on Conceptual Modelling Approaches for e-Business,

LNCS, Shanghai, China, 8–12th November 2004.

[16] M.A. Jackson, Software Requirements and Specifications, Addison-

Wesley, Reading, MA, 1995.

[17] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley,

Reading, MA, 1995.

[18] I. Bray, An Introduction to Requirements Engineering, Addison-

Wesley, Reading, MA, 2002.

[19] D. Bjorner, S. Koussoube, R. Noussi, G. Satchok, Michael Jackson’s

problem frames: towards methodological principles of selecting and

applying formal software development techniques and tools, First

IEEE International Conference on Formal Engineering Methods,

IEEE Computer Society Press, Hiroshima, Japan, November 1997,

pp. 263–270.

[20] J. Hall, M. Jackson, R. Laney, B. Nuseibeh, L. Rapanotti, Relating

software requirements and architectures using problem frames,

RE’02, 10th International Conference on Requirements Engineering,

IEEE Computer Society Press, Essen, Germany, September 2002,

pp. 137–144.

[21] L. Rapanotti, J. Hall, M. Jackson, B. Nuseibeh, Architecture-driven

problem decomposition, RE’04, 12th International Conference on

Requirements Engineering, Kyoto, Japan, September 6–10th 2004

(in press).

[22] K. Sikkel, R. Wieringa, R. Engmann, A case base for requirements

engineering: problem categories and solution techniques in:

A. Opdahl, K. Pohl, M. Rossi (Eds.), Sixth International Workshop

on Requirements Engineering: Foundation for Software Quality,

Stockholm, Essener Informatik Beitrage, Essen, 2000.

[23] M. Nelson, D. Cowan, P. Alencar, Geographic problem frames,

Proceedings of the Fifth International Symposium on Requirements

Engineering, Toronto, Canada, 27–31 August 2001, pp. 306–307.

[24] L. Lin, B. Nuseibeh, D. Ince, M. Jackson, J. Moffett, Introducing

abuse frames for analysing security requirements, 11th International

Conference on Requirements Engineering (RE’03), Monterey,

California, 8–12 September, pp. 371–372.

[25] I.K. Bray, K. Cox, The simulator: another elementary problem

frame?, in: C. Salinesi, B. Regnell, E. Kamsties (Eds.), Proceedings of
the Ninth International Workshop on Requirements Engineering:

Foundation for Software Quality—REFSQ 2003, Essener Informatik

Beitrage, Velden, Austria, 2003, pp. 121–124.

[26] J. Tomayko, Adapting problem frames to extreme programming XP

Universe Conference, Raleigh, NC ., 2001http//www.xpuniverse.

com/2001/pdfs/Edu02.pdf.

[27] K. Cox, K. Phalp, From process model to problem frame—a position

paper in: C. Salinesi, B. Regnell, E. Kamsties (Eds.), Proceedings of

the Ninth International Workshop on Requirements Engineering:

Foundation for Software Quality—REFSQ 2003, Essener Informatik

Beitrage, Velden, Austria, 2003, pp. 113–116.

[28] H. Reubenstein, R. Waters, The requirements apprentice: automated

assistance for requirements acquisition, IEEE Transactions on Soft-

ware Engineering 17 (1991) 226–240.

[29] A. Sutcliffe, N. Maiden, The domain theory for requirements engineering,

IEEE Transactions on Software Engineering 24 (1998) 174–196.

[30] N. Maiden, M. Hare, Problem domain categories in requirements

engineering, International Journal on Human–Computer Interaction

49 (1998) 281–304.

[31] P. Coad, D. North, M. Mayfield, Object Models: Strategies, Patterns

and Applications, Yourdon Press, 1995.

[32] M. Fowler, Analysis Patterns, Addison-Wesley, Reading, MA, 1996.

[33] S. Robertson, requirements patterns via events/use cases, http://www.

systemsguild.com/GuildSite/SQR/Requirements_Patterns.html,

viewed September 2003.

[34] M. Fowler, Patterns of Enterprise Application Architecture, Addison-

Wesley, Reading, MA, 2002.

[35] H. Kilov, Business Models: A Guide for Business and IT, Prentice-

Hall, Englewood Cliffs, NJ, 2002.

[36] P. Weill, M. Vitale, What IT infrastructure capabilities are needed to

implement e-business models, MIS Quarterly Executive 1 (1) (2002).

[37] M. Ould, Business Processes, Wiley, Chichester, 1995.

[38] K. Cox, J. Hall, L. Rapanotti (Eds.), Proceedings of the First

International Workshop on Applications and Advances of Problem

Frames—IWAAPF’04 (an ICSE’04 Workshop), IEE, Edinburgh,

2004.

[39] K. Cox, Heuristics for use case descriptions, PhD Thesis, Bourne-

mouth University, 2002.

[40] E. Kamsties, K. Hormann, M. Schlich, Requirements engineering in

small and medium enterprises, Requirements Engineering Journal 3

(1998) 84–90.

[41] C. Britton, J. Doake, Software System Development: A Gentle

Introduction, McGraw-Hill, 1993.

[42] D. Garlan, Problem types and problem frames, Lecture, http://www-2.

cs.cmu.edu/afs/cs.cmu.edu/project/tinker-arch/www/html/1998/Lec-

tures/03.ProbFrames/base.000.html.

[43] A. Davis, A. Hickey, Requirements researchers: do we practice what

we preach?, Requirements Engineering Journal 7 (2002) 107–111.

[44] M. Denscombe, The Good Research Guide, Open University Press,

1998.

http://www.xpuniverse.com/2001/pdfs/Edu02.pdf
http://www.xpuniverse.com/2001/pdfs/Edu02.pdf
http://www.systemsguild.com/GuildSite/SQR/Requirements_Patterns.html
http://www.systemsguild.com/GuildSite/SQR/Requirements_Patterns.html
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/tinker-arch/www/html/1998/Lectures/03.ProbFrames/base.000.html
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/tinker-arch/www/html/1998/Lectures/03.ProbFrames/base.000.html
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/tinker-arch/www/html/1998/Lectures/03.ProbFrames/base.000.html

	Deriving requirements from process models via the problem frames approach
	Introduction
	Introduction to problem frames
	Related work on problem frames
	Domain modelling
	Role activity diagrams
	Purpose of this study

	Background to the industrial study
	Process models and context diagrams: equivalence of information
	Mapping from role activity diagrams to problem frames
	Step 1. Describe role activity diagram
	Step 2. Identify outcomes of interactions
	Step 3. Identify potential domains from outcomes
	Step 4. Identify potential rules that govern the interactions
	Step 5. Identify the problem frame

	The problem frames: examples of the approach
	Credit check
	Send credit status
	Prepare for word
	Transfer to Word
	Print
	Send for posting/send forms to customer/return forms
	Update machine
	Email/SMS new trader
	Inform bank
	Acceptance message

	Threats to validity
	Objectivity
	Reliability

	Discussion
	Conclusions
	Acknowledgements
	Appendix A
	References


