
www.bournemouth.ac.uk

Software Systems Modelling

Dr Keith Phalp (and others…)

Computing Framework Software Systems Modelling

Outline for today

• Overview of the unit and how the unit will be delivered.
• Describe core content and scheme of work.
• What we are looking for at level H.
• Gentle intro, to give some context and generate

discussion.

– For Software models (and UML), how did these
evolve, what were the motivations, what where
the alternatives, how do we know what is best
and so on?

• Find out your own backgrounds and skills.
• Recap some basic understanding of OO and UML.
• Outline exercises.

Computing Framework Software Systems Modelling

Background to this
part of the course

• Software Systems Modelling means many things to many
people.

• In essence, we are looking at a variety of ways in which
modelling is used to help us to build software systems.

• To some extent this has been a very long term goal of
software engineering.

• However, some other (perhaps lower level) generic
modelling techniques, e.g., patterns, may also prove
useful.

• Will try to consider both approach 'method' and
modelling notations (e.g., UML diagram).

• Will try to learn from your experiences, and bring in
expertise for specific topics.

Computing Framework Software Systems Modelling

My approach to the
unit and level H

• Final year is often a big change in culture and approach.

• You have experience and expertise (you can do the work), but this
is about building your critical powers and reflection.

• You will still have to demonstrate competency in software
modelling, but greater emphasis on critique.

• This is assessed by coursework (30%) and examination (70%).

• For this year many of the topics will be presented (often by guest
speakers) as lectures often with suggested reading.

• There should be no major surprises.

• My aim is to get coursework out (and back in) early and to try to
get feedback to you before Christmas.

• Revision lectures before Christmas will review material covered
and highlight topics.

Computing Framework Software Systems Modelling

Doing versus
reflecting

At level H, you need to not only ‘do things’ but also reflect
upon them,
and the processes and concepts.

E.g., Expected that you ought to be able to ‘do’:
 Class diagrams, sequence diagrams, refactor, etc..

However, its the reflection that makes it H-level.
We will try to take this approach throughout.
Though you often illustrate an arguments with examples in different
notations.

Computing Framework Software Systems Modelling

My background

• Wide ranging interests with a focus on Software Engineering. Of particular
relevance to this unit:

– Taught Systems design (various methods) since 1992, and have used Systems Design
for project builds.

– Originally SASD (Yourdon), then OO from mid-90s; OMT (Southampton), Coad and
Yourdon (Bournemouth) and then UML (BU)

– Have written about aspects of UML Design (e.g., OOPSLA 99) and specification
(extensively throughout last decade or so). .

– Also taught PDOA here at BU, though this tends to focus on requirements and analysis
rather than the design phase.

– Hence, not tied to one approach, rather it is about choosing, adopting or even evolving
approaches for different problems.

– Principal Investigator on EC funded project (total 2.3M Euros) which investigated and
developed a model driven toolset, working with leading industrial and academic
partners (2005-2009), and which was rated highly by European Commission.

– Much experience of Empirical Software Engineering (which is, in essence, trying to
investigate whether methods, tools, notations etc., used in SE really help).

Computing Framework Software Systems Modelling

Unit Spec and ILOs

1) Demonstrate expert knowledge of the changing nature of software-intensive
systems.

2) Select appropriate techniques systematically from the range of methods and tools
available to develop such systems.

3) Demonstrate expertise of object oriented modeling, and apply the Unified Modelling
Language (UML) to produce appropriate software design models for software-
intensive systems.

4) Apply Model Driven Architecture (MDA) and patterns in order to create designs for
business applications effectively.

5) Understand the professional issues, implications and impact of the production of
software systems models.

The weighting of coursework to examination is 30:70.

Indicative Assessment Information

Learning outcomes 2, 3 and 4 will be assessed by coursework, equivalent to 2000 words. A typical
assignment will be to produce a series of software design models appropriate to a given scenario or
scenarios.

Typically, learning outcomes 1, 3 and 5 will be assessed by end of year examination.

Computing Framework Software Systems Modelling

Core content

• Core Topics (Skills)

• For some given scenario be able to produce appropriate design models (UML)

• To be able to select (or at least argue the merits) of different techniques

• Clearly this suggests exposure to alternatives (Question to you from your
experience: what could these alternatives include?)

• To be able to show how you would use MDA

• To be able to show how you would use patterns.

• Discursive Topics:

• Demonstrate expert knowledge of the changing nature of software-intensive systems.

• Some context or perspective on methods.

• For example, where did these modelling methods all come from, how did they evolve, how different
are they really, and how does this help us choose the best approach for a given problem?

• Impact of what you are doing, professional issues.

Computing Framework Software Systems Modelling

Draft Teaching
Scheme

Unit week w/c Topics for Lecture / Presentation

1 03/10/11 Keith Phalp

2 10/10/11 Modelling exercises Keith Phalp

3 17/10/11 Patterns exercise

4 24/10/11 Literature based exercise Keith Phalp

5 31/10/11 UML Exercises Steve Webster

6 07/11/11 The Darker Parts of UML 2 UML Exercises Steve Webster
7 14/11/11 Patterns exercise

8 21/11/11 Support for Assignment Keith Phalp

9 28/11/11 Domain Specific Languages & Converge No seminar Laurie Tratt
10 05/12/11 Revision Session (Lecture Only) Revision Keith Phalp
11 12/12/11 Feedback Session Keith Phalp

Supporting Seminar
Session

Presenter /
Lecturer

Overview of the Unit. Explanation of the approach for the unit this year. Finding
out your Software Modelling Background and Experience. What models and
method your or your placement companies used. Evolution of Software Systems
Models. May (if time allows) recap class diagram approach and evolution of UML.
What advantages of OO over previous approaches (simple example to contrast
different perspectives).

OO Modelling examples
from Small Scenarios.
E.g., tea, Hovel, Car Park

Recap of OO Modelling (the mainstream usage) and contrast with / discuss other
appraoches (e.g. SASD). More parts of the UML, e.g., Sequence diagrams
Statecharts. Understanding what design means for large scale Software Systems,
Architectural Issues. Assessing and Measuring Designs.
Design Patterns 1: Pt 1, Introduction, What is a pattern? History of patterns in SE.
Why are patterns useful? Gang of Four Design Patterns (Gamma et al).
Categorising GoF - creational, structural, behavioural, Creational patterns,
Structural patterns, Behavioural patterns, Larman's GRASPs (General
Responsibility Assignment Software Patterns)

Richard
Gunstone

Model Driven Development (experiences from development of MDA tools).
Presentations of existing tools and what they bring for Software Systems
Modelling.
The Darker Parts of UML: A tour of the darker corners of UML as used by a
practising business analyst. These lectures and activities will present the practical
value of some of the elements, definitely including Statecharts, Activity Diagrams
and even OCL. We will also briefly review the value of the whole UML project.

Design Patterns 2: Pt 1: Broader initiative relating to patterns, IBM Patterns for
eBusiness, Applications of patterns. Have patterns lived up to their promise?
Commonly used UML: Case study, Examples of Patterns being used,
Frameworks and Relationship to Patterns: Recommended reading.

Richard
Gunstone

Support for Assignment Hand in. The Hand in date is Monday 28th. Therefore
support this week and lecture next on additional topic.

Revision surgery Sessions. Also aim to give assignment feedback this week (may
need specific session)

Computing Framework Software Systems Modelling

What have you
used?

• So far we have gathered an impressive list of experience.
• Most have used class diagrams
• Fair few used class diagrams in placement
• Smattering of use case experience (again placement)
• Some with significant industrial experience, e.g., from British

Aerospace, Class, Sequence and state-charts.
• Some experience with structured.
• Those OO all used UML
• Range of languages, mostly various incarnations of C, C++, Java, C#.

• What about methods (often, wrongly, called methodologies).
• What about frameworks (e.g., Eclipse), model driven,

patterns, any other pertinent SSM techniques?

Computing Framework Software Systems Modelling

Where did Methods
come from?

Software “crisis”
more like “malaise”
Software “Engineering” 1968 (nearly as old as me!!)
Methods for programming, then design, then analysis…(first

structured then …)
The need to understand.
The need to conceptualise.
The enforcement of documentation.
Other reasons? (Suggestions...)

What was there before our current crop?

Computing Framework Software Systems Modelling

Top-down
decomposition

Problem

Sub-
problem

Sub-
problem

decompose

..

.

Computing Framework Software Systems Modelling

Data Flow
Diagram

payment,
inquiries

billing
information

orders

CUSTOMERS

CUSTOMERS

WAREHOUSE

1.
RECEIVE
ORDER

3.
COLLECT

PAYMENTS

2.
SHIP

BOOKS

ORDERS

CUSTOMERS

INVOICES

invalid
orders

order
details

customer
name,
customer
address

shipping
details

books

books

customer
name,
customer
address

customer
name,
customer
address

customer
name, invoice
details

invoices,
statements

Computing Framework Software Systems Modelling

Finite State
Machine

On loan On the shelf

return()

borrow()

name
state initial state

event trigger

Computing Framework Software Systems Modelling

ERD
Basic
Version

InventoryRecord

@InventoryNumber
BookingStatus
ItemLocation
ElectricallyTested
ItemStatus
DatePurchased
FixedAssetsRegNo.
ExtraInformation

Item

@BarcodeNumber
ItemName
Category
Make
Model
SerialNumber
InventoryNumber*

Customer

@IDNumber
@CustomerName
CustomerAddress
TelephoneNumber
Course

ProvisionalBooking

@BookingNumber
DateBookedFrom
DateBookedTo
Category
CustomerName*

Issue

@BookingNumber*
@IDNumber*
LocationUsage
TimeFrom
TimeTo
TechnicalSupport
Frequency
AdditionalInformation
BarcodeNumber*

makes a

is made by

is a completed

becomes

for

has

contains

required for

Computing Framework Software Systems Modelling

OO (and other
'Modern' ideas)

Object-orientation (OO). A case of reverse engineering. OO a programming
approach (Simula67, Algol 68, later: Smalltalk, C++, Ada (sort of), Java),
then led to OO Design (very succesfull in adoption and many incarnations)
and then to OO Analysis (which has never really lived up to its promise).

Patterns (Gamma, onwards...),

SOA, and variants..
refactoring,
OMT, C&Y OO, Booch, Schlaer & Mellor, OOSE, UML
Model driven (MDD and MDA),

Domain Specific Languages (DSLs).
Frameworks for programming (e.g., Eclipse)

What about functional languages, declarative approaches, executable
specification?

Computing Framework Software Systems Modelling

Motivations for OO

Failures of existing approaches. Software crisis (malaise).
Increasing problem domain complexity.
Increasing size of software.
Inter / intra project communication problems (e.g., different analysis
teams, and design teams using different models).
Maintenance (How much of development is maintenance – your
estimates).
Legacy Systems (tales from the Process Project and SEBPC).
The Hope for Reuse (tales from Bosch) – and product lines.

Notational Arguments (Coad's Canyons and the 'too many views'
argument), plus issues with 'existing' approaches.

Computing Framework Software Systems Modelling

Motivations for OO

Failures of existing approaches.
Increasing problem domain complexity.
Increasing size of software.
Inter / intra project communication problems (e.g., different analysis
teams, and design teams using different models).
Maintenance (How much of development is maintenance – your
estimates).
Legacy Systems (tales from the Process Project and SEBPC).
The Hope for Reuse (tales from Bosch) – and product lines.

Notational Arguments (Coad's Canyons and the 'too many views'
argument), plus issues with 'existing' approaches.

Computing Framework Software Systems Modelling

A Continuum of
Representation

Peter Coad suggested two 'Grand Canyons'

DFD ERD Analysis Design

These canyons bridged by a common notation

Computing Framework Software Systems Modelling

Views
of a
System

SYSTEM

Data
 view

E R
diagram

Process
 view

DFD

Timing and
control view

FSM

 Data
Dictionary

Computing Framework Software Systems Modelling

Limitations of DFDs

Data flow approach focuses on
system processing issues. Processing
requirements are quick to change.
Stored information spread all over
the DFD hierarchy.
Conversion of DFD to code (or even
to structure chart) is very arbitrary.

Computing Framework Software Systems Modelling

At last: UML

Unified Modeling Language (UML) is one of a number of
approaches to providing a notation for OO.
Builds upon other approaches, e..g., Booch, OMT, OOSE.
Hugely popular & widely used.

OR
A general purpose visual modelling language that is used to specify,
visualize, construct and document artefacts of a system.
UML provides notation to describe OO designs; geared for Object
Oriented systems

Parts of UML could be applicable to other programming paradigms,
indeed, arguably are not really OO (e.g., use cases (OOSE)
procedural in nature, statecharts – were part of STATEMATE).

Computing Framework Software Systems Modelling

Evolution of UML

 In essence this is nothing more than a collection of different
modelling techniques: Booch, Jacobson, Rumbaugh.
 By early 1990’s there was disparity among different camps, and a
standard was needed (or at least this was argued).
 Huge impact of three major camps (the three amigos) combining
forces within UML.
 Taken on by Object Management Group (OMG), and major success
with version 1.1, 1997. Changes, at 2.0, often use 2.1, and now 2.3.
 Original set of diagrams was: Class, Object, Use Case, Sequence,
Collaboration, Statechart, Activity diagram, Component diagram,
Deployment diagram.

Computing Framework Software Systems Modelling

Further Exercises

A recap of finding objects (can also use to contrast OOA with
OOD. (First Tea & then Pizza)
Extras: Have you ever tried CRC cards? (Worth trying).
Introduction to the approach also given

BONUS MATERIAL: A quick whizz through (or a recap) of
classes in OO (UML), and techniques for finding classes.
Two versions available: (the more abstract argument based,
or the more code-based).

