
Domain specific languages:
why? how? and where next?

Laurence Tratt
http://tratt.net/laurie/

King’s College London

2011/11/22

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 1 / 47

http://tratt.net/laurie/
http://tratt.net/laurie/


A question

What’s this?

Is it a language for computers or a language for railway timetables?

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 2 / 47

http://tratt.net/laurie/


A question

What’s this?

Is it a language for computers or a language for railway timetables?

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 2 / 47

http://tratt.net/laurie/


A question

What’s this?

Is it a language for computers or a language for railway timetables?
L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 2 / 47

http://tratt.net/laurie/


The situation

To express a solution we need a language.

On computers we turn to General Purpose Languages
(GPLs)—e.g. Java, C#(), C++, Python, Ruby...
For new or unusual problems, GPLs are nearly always great.
But not always for repetitive tasks. Why?

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 3 / 47

http://tratt.net/laurie/


The situation

To express a solution we need a language.
On computers we turn to General Purpose Languages
(GPLs)—e.g. Java, C#(), C++, Python, Ruby...

For new or unusual problems, GPLs are nearly always great.
But not always for repetitive tasks. Why?

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 3 / 47

http://tratt.net/laurie/


The situation

To express a solution we need a language.
On computers we turn to General Purpose Languages
(GPLs)—e.g. Java, C#(), C++, Python, Ruby...
For new or unusual problems, GPLs are nearly always great.
But not always for repetitive tasks. Why?

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 3 / 47

http://tratt.net/laurie/


Why do we have GPLs?

Let’s take Java.
Main features: packages, classes, functions, static types, garbage
collection, variables, if, while, for, and so on.

Really: building blocks.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 4 / 47

http://tratt.net/laurie/


Why do we have GPLs?

Let’s take Java.
Main features: packages, classes, functions, static types, garbage
collection, variables, if, while, for, and so on.
Really: building blocks.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 4 / 47

http://tratt.net/laurie/


Building blocks

Virtually anything can be built with them...

Photo: David Iliff (licence)

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 5 / 47

http://en.wikipedia.org/wiki/File:Natural_History_Museum_London_Jan_2006.jpg
http://tratt.net/laurie/


Building blocks

...but it can be repetitive.

Photo: Mark Murphy (licence)
L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 5 / 47

http://commons.wikimedia.org/wiki/File:Terraced_houses_at_fortuneswell.jpg
http://tratt.net/laurie/


GPLs summary

Low level building blocks.
Virtually any task will need some (often all) of the building blocks.

But few naturally map onto them.
Very general; jacks of all trades, masters of none.
The railway timetable uses only a tiny fraction of a GPLs power...

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 6 / 47

http://tratt.net/laurie/


GPLs summary

Low level building blocks.
Virtually any task will need some (often all) of the building blocks.
But few naturally map onto them.

Very general; jacks of all trades, masters of none.
The railway timetable uses only a tiny fraction of a GPLs power...

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 6 / 47

http://tratt.net/laurie/


GPLs summary

Low level building blocks.
Virtually any task will need some (often all) of the building blocks.
But few naturally map onto them.
Very general; jacks of all trades, masters of none.
The railway timetable uses only a tiny fraction of a GPLs power...

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 6 / 47

http://tratt.net/laurie/


My GPL is better than yours

But wait—my favourite language is better than Java!

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 7 / 47

http://tratt.net/laurie/


My GPL is better than yours

But wait—my favourite language is better than Java!

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 7 / 47

http://tratt.net/laurie/


My GPL is better than yours

But wait—my favourite language is better than Java!

(l-r) Java, C++, Python, C#, Haskell

Source: Library & Archives Canada (licence)

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 7 / 47

http://collectionscanada.gc.ca/pam_archives/index.php?fuseaction=genitem.displayItem&rec_nbr=3192103
http://tratt.net/laurie/


My GPL is better than yours

But wait—my favourite language is better than Java!
GPLs are nearly all extremely similar.
We magnify small differences for cultural reasons.
They’re all jack of all trades, master of none.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 7 / 47

http://tratt.net/laurie/


DSLs—the basic idea

DSL: a small language targeted at a specific class of problems.
Allows you to specify repetitive tasks with small amounts of
variation.
‘Do one thing and do it well.’

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 8 / 47

http://tratt.net/laurie/


DSL examples

SQL (databases)

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 9 / 47

http://tratt.net/laurie/


DSL examples

make (software builds)

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 9 / 47

http://tratt.net/laurie/


Hardware DSLs

Question: are DSLs only for low-level software activities?

Verilog: hardware description language.
module counter (clk,rst,enable,count);
input clk, rst, enable;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk or posedge rst)
if (rst) begin
count <= 0;

end else begin : COUNT
while (enable) begin

count <= count + 1;
disable COUNT;

end
end

endmodule

Source: Deepak Kumar Tala

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 10 / 47

http://www.asic-world.com/verilog/verilog_one_day2.html
http://tratt.net/laurie/


Hardware DSLs

Question: are DSLs only for low-level software activities?
Verilog: hardware description language.
module counter (clk,rst,enable,count);
input clk, rst, enable;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk or posedge rst)
if (rst) begin
count <= 0;

end else begin : COUNT
while (enable) begin

count <= count + 1;
disable COUNT;

end
end

endmodule

Source: Deepak Kumar Tala

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 10 / 47

http://www.asic-world.com/verilog/verilog_one_day2.html
http://tratt.net/laurie/


Why would we want DSLs?

DSLs are good when we do the same type of task repeatedly.
But is that it?

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 11 / 47

http://tratt.net/laurie/


Consideration 1: accessibility

Programming is how we tell computers what to do.

DSLs can remove complex confusing features.
income tax {
2010-2011 {

allowance {
age < 65: £6,475
age >= 65 and age <= 74: £9,490
age > 74: £9,640

reduction: if income > £100,000 then
max(0, allowance - ((income - £100,000) / 2))

}
}

}

Tax rules source: HMRC

Pros / cons:
+ Can allow non-programmers to do programming-like things.
- Sometimes complexity is fundamental.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 12 / 47

http://www.hmrc.gov.uk/rates/it.htm
http://tratt.net/laurie/


Consideration 1: accessibility

Programming is how we tell computers what to do.
Many (most?) people struggle with programming...

DSLs can remove complex confusing features.
income tax {
2010-2011 {

allowance {
age < 65: £6,475
age >= 65 and age <= 74: £9,490
age > 74: £9,640

reduction: if income > £100,000 then
max(0, allowance - ((income - £100,000) / 2))

}
}

}

Tax rules source: HMRC

Pros / cons:
+ Can allow non-programmers to do programming-like things.
- Sometimes complexity is fundamental.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 12 / 47

http://www.hmrc.gov.uk/rates/it.htm
http://tratt.net/laurie/


Consideration 1: accessibility

DSLs can remove complex confusing features.

income tax {
2010-2011 {

allowance {
age < 65: £6,475
age >= 65 and age <= 74: £9,490
age > 74: £9,640

reduction: if income > £100,000 then
max(0, allowance - ((income - £100,000) / 2))

}
}

}

Tax rules source: HMRC

Pros / cons:
+ Can allow non-programmers to do programming-like things.
- Sometimes complexity is fundamental.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 12 / 47

http://www.hmrc.gov.uk/rates/it.htm
http://tratt.net/laurie/


Consideration 1: accessibility

DSLs can remove complex confusing features.
income tax {
2010-2011 {
allowance {

age < 65: £6,475
age >= 65 and age <= 74: £9,490
age > 74: £9,640

reduction: if income > £100,000 then
max(0, allowance - ((income - £100,000) / 2))

}
}

}

Tax rules source: HMRC

Pros / cons:
+ Can allow non-programmers to do programming-like things.
- Sometimes complexity is fundamental.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 12 / 47

http://www.hmrc.gov.uk/rates/it.htm
http://tratt.net/laurie/


Consideration 1: accessibility

DSLs can remove complex confusing features.
income tax {
2010-2011 {
allowance {

age < 65: £6,475
age >= 65 and age <= 74: £9,490
age > 74: £9,640

reduction: if income > £100,000 then
max(0, allowance - ((income - £100,000) / 2))

}
}

}

Tax rules source: HMRC

Pros / cons:
+ Can allow non-programmers to do programming-like things.

- Sometimes complexity is fundamental.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 12 / 47

http://www.hmrc.gov.uk/rates/it.htm
http://tratt.net/laurie/


Consideration 1: accessibility

DSLs can remove complex confusing features.
income tax {
2010-2011 {
allowance {

age < 65: £6,475
age >= 65 and age <= 74: £9,490
age > 74: £9,640

reduction: if income > £100,000 then
max(0, allowance - ((income - £100,000) / 2))

}
}

}

Tax rules source: HMRC

Pros / cons:
+ Can allow non-programmers to do programming-like things.
- Sometimes complexity is fundamental.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 12 / 47

http://www.hmrc.gov.uk/rates/it.htm
http://tratt.net/laurie/


Consideration 2: implementation flexibility

Virtually all programming is done in imperative languages.

Advantage: explicitness. Disadvantage: explicitness.
DSLs are an abstraction over a domain.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 13 / 47

http://tratt.net/laurie/


Consideration 2: implementation flexibility

Virtually all programming is done in imperative languages.
Advantage: explicitness.

Disadvantage: explicitness.
DSLs are an abstraction over a domain.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 13 / 47

http://tratt.net/laurie/


Consideration 2: implementation flexibility

Virtually all programming is done in imperative languages.
Advantage: explicitness. Disadvantage: explicitness.

DSLs are an abstraction over a domain.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 13 / 47

http://tratt.net/laurie/


Consideration 2: implementation flexibility

Virtually all programming is done in imperative languages.
Advantage: explicitness. Disadvantage: explicitness.
DSLs are an abstraction over a domain.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 13 / 47

http://tratt.net/laurie/


Consideration 2: implementation flexibility

SQL:
SELECT * FROM nodes WHERE node.parent=NULL;

C:
table *nodes = get_table(db, "nodes");
cursor *c = mk_cursor(nodes);
row *r;
results res = mk_results();
while ((r = get_next(c)) != null) {
if (get_column(r, "parent") == null)
add_result(res, r);

}

How do you make parallelized versions of each?
C: rewrite your program (pthreads etc.).
SQL: a cleverer SQL implementation.

Pros / cons:
+ Moves the burden from programmer to language implementer.
- Over-abstraction can preclude some reasonable programs.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 14 / 47

http://tratt.net/laurie/


Consideration 2: implementation flexibility

SQL:
SELECT * FROM nodes WHERE node.parent=NULL;

C:
table *nodes = get_table(db, "nodes");
cursor *c = mk_cursor(nodes);
row *r;
results res = mk_results();
while ((r = get_next(c)) != null) {
if (get_column(r, "parent") == null)
add_result(res, r);

}

How do you make parallelized versions of each?

C: rewrite your program (pthreads etc.).
SQL: a cleverer SQL implementation.

Pros / cons:
+ Moves the burden from programmer to language implementer.
- Over-abstraction can preclude some reasonable programs.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 14 / 47

http://tratt.net/laurie/


Consideration 2: implementation flexibility

SQL:
SELECT * FROM nodes WHERE node.parent=NULL;

C:
table *nodes = get_table(db, "nodes");
cursor *c = mk_cursor(nodes);
row *r;
results res = mk_results();
while ((r = get_next(c)) != null) {
if (get_column(r, "parent") == null)
add_result(res, r);

}

How do you make parallelized versions of each?
C: rewrite your program (pthreads etc.).

SQL: a cleverer SQL implementation.

Pros / cons:
+ Moves the burden from programmer to language implementer.
- Over-abstraction can preclude some reasonable programs.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 14 / 47

http://tratt.net/laurie/


Consideration 2: implementation flexibility

SQL:
SELECT * FROM nodes WHERE node.parent=NULL;

C:
table *nodes = get_table(db, "nodes");
cursor *c = mk_cursor(nodes);
row *r;
results res = mk_results();
while ((r = get_next(c)) != null) {
if (get_column(r, "parent") == null)
add_result(res, r);

}

How do you make parallelized versions of each?
C: rewrite your program (pthreads etc.).
SQL: a cleverer SQL implementation.

Pros / cons:
+ Moves the burden from programmer to language implementer.
- Over-abstraction can preclude some reasonable programs.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 14 / 47

http://tratt.net/laurie/


Consideration 2: implementation flexibility

SQL:
SELECT * FROM nodes WHERE node.parent=NULL;

C:
table *nodes = get_table(db, "nodes");
cursor *c = mk_cursor(nodes);
row *r;
results res = mk_results();
while ((r = get_next(c)) != null) {
if (get_column(r, "parent") == null)
add_result(res, r);

}

How do you make parallelized versions of each?
C: rewrite your program (pthreads etc.).
SQL: a cleverer SQL implementation.

Pros / cons:
+ Moves the burden from programmer to language implementer.

- Over-abstraction can preclude some reasonable programs.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 14 / 47

http://tratt.net/laurie/


Consideration 2: implementation flexibility

SQL:
SELECT * FROM nodes WHERE node.parent=NULL;

C:
table *nodes = get_table(db, "nodes");
cursor *c = mk_cursor(nodes);
row *r;
results res = mk_results();
while ((r = get_next(c)) != null) {
if (get_column(r, "parent") == null)
add_result(res, r);

}

How do you make parallelized versions of each?
C: rewrite your program (pthreads etc.).
SQL: a cleverer SQL implementation.

Pros / cons:
+ Moves the burden from programmer to language implementer.
- Over-abstraction can preclude some reasonable programs.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 14 / 47

http://tratt.net/laurie/


Consideration 3: Economics

The bottom line: does it save money?

If you’re using someone else’s DSL: almost certainly yes.
But if you need to build a DSL: it depends.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 15 / 47

http://tratt.net/laurie/


Consideration 3: Economics

The bottom line: does it save money?
If you’re using someone else’s DSL: almost certainly yes.
But if you need to build a DSL: it depends.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 15 / 47

http://tratt.net/laurie/


Consideration 3: Economics

Source: P. Hudak ‘Modular domain specific languages and tools’

+ It can save serious amounts of money.
- Short-term hit for long-term gain.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 16 / 47

http://tratt.net/laurie/


Consideration 3: Economics

Source: P. Hudak ‘Modular domain specific languages and tools’

+ It can save serious amounts of money.
- Short-term hit for long-term gain.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 16 / 47

http://tratt.net/laurie/


Consideration 3: Economics

Source: P. Hudak ‘Modular domain specific languages and tools’

+ It can save serious amounts of money.

- Short-term hit for long-term gain.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 16 / 47

http://tratt.net/laurie/


Consideration 3: Economics

Source: P. Hudak ‘Modular domain specific languages and tools’

+ It can save serious amounts of money.
- Short-term hit for long-term gain.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 16 / 47

http://tratt.net/laurie/


What defines a DSL?

[Inherently subjective and ill-defined. But... ]

Has a well-defined problem domain.
Has its own syntax.
[Practically speaking: its own implementation]

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 17 / 47

http://tratt.net/laurie/


What defines a DSL?

[Inherently subjective and ill-defined. But... ]
Has a well-defined problem domain.

Has its own syntax.
[Practically speaking: its own implementation]

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 17 / 47

http://tratt.net/laurie/


What defines a DSL?

[Inherently subjective and ill-defined. But... ]
Has a well-defined problem domain.
Has its own syntax.
[Practically speaking: its own implementation]

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 17 / 47

http://tratt.net/laurie/


What DSLs aren’t

Haskell and Ruby people talk about ‘internal DSLs’.
Just a [clever?] way of using libraries.
IMHO: not DSLs. Better called fluent interfaces.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 18 / 47

http://martinfowler.com/bliki/FluentInterface.html
http://tratt.net/laurie/


DSL flavours

make: standalone

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 19 / 47

http://tratt.net/laurie/


DSL flavours

SQL: embedded, syntactically distinct, run-time

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 19 / 47

http://tratt.net/laurie/


DSL flavours

SQL: embedded, syntactically distinct, compile-time

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 19 / 47

http://tratt.net/laurie/


DSL flavours

UML: diagrammatic

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 19 / 47

http://tratt.net/laurie/


DSL flavours

Metro systems: diagrammatic

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 19 / 47

http://tratt.net/laurie/


DSL implementation techniques

A representative sample:
Stand alone.
Converge (embedded, homogeneous).
Stratego (embedded / standalone, heterogeneous).
Intentional (embedded, heterogeneous).
MPS (embedded, homogeneous).
Xtext (standalone, heterogeneous).

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 20 / 47

http://convergepl.org
http://strategoxt.org/
http://intentsoft.com/
http://www.jetbrains.com/mps/
http://www.eclipse.org/Xtext/
http://tratt.net/laurie/


Part II

Part II: The Converge Language

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 21 / 47

http://tratt.net/laurie/


What is Converge?

Converge has a number of influences. Relevant ones include:
is dynamically, but strongly typed (think Python).
is compiled to bytecode and run by a VM (think Java).
can perform compile-time meta-programming (as Template
Haskell, but probably easiest to think of macros in LISP/Scheme).
can have its syntax extended (think MetaBorg).

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 22 / 47

http://tratt.net/laurie/


Hello world

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 23 / 47

http://tratt.net/laurie/


Compile-time meta-programming

This is the tricky, interesting bit. Code (as trees, not text) is
programmatically generated.

Expression 2 + 3 evaluates to 5 as one expects.

Splice $<x> evaluates x at compile-time; the
AST returned overwrites the splice.

Quasi-quote [| 2 + 3 |] evaluates to a hygienic AST repre-
senting 2 + 3.

Insertion [| 2 + ${x} |] ‘inserts’ the AST x into the AST be-
ing created by the quasi-quotes.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 24 / 47

http://tratt.net/laurie/


Compile-time meta-programming

This is the tricky, interesting bit. Code (as trees, not text) is
programmatically generated.

Expression 2 + 3 evaluates to 5 as one expects.

Splice $<x> evaluates x at compile-time; the
AST returned overwrites the splice.

Quasi-quote [| 2 + 3 |] evaluates to a hygienic AST repre-
senting 2 + 3.

Insertion [| 2 + ${x} |] ‘inserts’ the AST x into the AST be-
ing created by the quasi-quotes.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 24 / 47

http://tratt.net/laurie/


An example

func expand_power(n, x):
if n == 0:

return [| 1 |]
else:
return [| $c{x} * $c{expand_power(n - 1, x)} |]

func mk_power(n):
return [|
func (x):

return $c{expand_power(n, [| x |])}
|]

power3 := $<mk_power(3)>

means that power3 looks like:
power3 := func (x):
return x * x * x * 1

by the time it is compiled to bytecode.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 25 / 47

http://tratt.net/laurie/


printf

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 26 / 47

http://tratt.net/laurie/


What use is compile-time meta-programming?

Now we have a modern programming language with macros...
...we can ‘compile’ arbitrary strings at compile time and...
...a DSL input is really just a string...

But that is far as previous approaches have got...

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 27 / 47

http://tratt.net/laurie/


What use is compile-time meta-programming?

Now we have a modern programming language with macros...
...we can ‘compile’ arbitrary strings at compile time and...
...a DSL input is really just a string...
But that is far as previous approaches have got...

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 27 / 47

http://tratt.net/laurie/


Part III

Part III: DSLs in Converge

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 28 / 47

http://tratt.net/laurie/


DSL creation in Converge

DSLs use a simple layer on top of compile-time
meta-programming.
The sole language feature for DSLs is the DSL block.
Allows embedding arbitrary strings using the indentation based
syntax.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 29 / 47

http://tratt.net/laurie/


But first... parsing!

Parsing is about finding the structure of text.
Many ways to do this, but we’ll look at one.
Languages (natural or computer) have an underlying grammar.

Simple English grammar:
sentence ::= subject verb object

e.g. Bill hits Ben

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 30 / 47

http://tratt.net/laurie/


But first... parsing!

Parsing is about finding the structure of text.
Many ways to do this, but we’ll look at one.
Languages (natural or computer) have an underlying grammar.
Simple English grammar:
sentence ::= subject verb object

e.g. Bill hits Ben

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 30 / 47

http://tratt.net/laurie/


Parsing phases

Simplest way: tokenize then parse.
Tokenize: split input up into individual tokens. [e.g. in English split
words by the presence of spaces or punctuation]. Creates list of
tokens.
Parse: work out the sturcture of the tokens relative to the
grammar. Creates a parse tree.

Tokenization is generally easy.
Parsing isn’t: use a grammar formalism to help.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 31 / 47

http://tratt.net/laurie/


Parsing phases

Simplest way: tokenize then parse.
Tokenize: split input up into individual tokens. [e.g. in English split
words by the presence of spaces or punctuation]. Creates list of
tokens.
Parse: work out the sturcture of the tokens relative to the
grammar. Creates a parse tree.
Tokenization is generally easy.
Parsing isn’t: use a grammar formalism to help.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 31 / 47

http://tratt.net/laurie/


BNF

Context Free Grammars (CFGs) can express most programming
languages.
Earley parsing can parse any CFG, so use that.
Backus-Naur Form (BNF): the standard(ish) way of specifying
CFGs.
A very simple calculator grammar:
E ::= INT "+" INT

| INT "*" INT

Now we can do a ‘yes/no’ parse of 2 + 3 and 6 * 2.

But ‘yes/no’ isn’t very useful: build parse trees.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 32 / 47

http://tratt.net/laurie/


BNF

Context Free Grammars (CFGs) can express most programming
languages.
Earley parsing can parse any CFG, so use that.
Backus-Naur Form (BNF): the standard(ish) way of specifying
CFGs.
A very simple calculator grammar:
E ::= INT "+" INT

| INT "*" INT

Now we can do a ‘yes/no’ parse of 2 + 3 and 6 * 2.
But ‘yes/no’ isn’t very useful: build parse trees.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 32 / 47

http://tratt.net/laurie/


Self-referencing rules

A better calculator:
E ::= E "+" E

| E "*" E
| INT

What parse tree will we get for 2 + 3 * 4?

Resolve ambiguity with precedences:
E ::= E "+" E %precedence 0

| E "*" E %precedence 10

Higher precedences are preferred.
An aside: in general, it’s not known how to statically detect
ambiguities in arbitrary CFGs. Ambiguities are sort-of run-time
errors.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 33 / 47

http://tratt.net/laurie/


Self-referencing rules

A better calculator:
E ::= E "+" E

| E "*" E
| INT

What parse tree will we get for 2 + 3 * 4?
Resolve ambiguity with precedences:
E ::= E "+" E %precedence 0

| E "*" E %precedence 10

Higher precedences are preferred.

An aside: in general, it’s not known how to statically detect
ambiguities in arbitrary CFGs. Ambiguities are sort-of run-time
errors.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 33 / 47

http://tratt.net/laurie/


Self-referencing rules

A better calculator:
E ::= E "+" E

| E "*" E
| INT

What parse tree will we get for 2 + 3 * 4?
Resolve ambiguity with precedences:
E ::= E "+" E %precedence 0

| E "*" E %precedence 10

Higher precedences are preferred.
An aside: in general, it’s not known how to statically detect
ambiguities in arbitrary CFGs. Ambiguities are sort-of run-time
errors.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 33 / 47

http://tratt.net/laurie/


EBNF

A simplified EBNF grammar... for EBNF!
Grammar ::= Rule*

Rule ::= ID "::=" Prod ( "|" Prod )*

Prod ::= Expr*

Expr ::= ID
| STRING
| "(" Expr* ")"
| Expr "*"

[Don’t worry if this makes your head hurt for the moment.]

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 34 / 47

http://tratt.net/laurie/


Simplifying parsing

Hudak: syntax extension is bad. (Because parsing is horrid).
Converge aims to make parsing easy.
Converge’s tokenizer (a.k.a. lexer) is designed for use by
non-Converge languages.
It can be told to parse new keywords and ‘unknown’ symbols.
Converge has a built in Earley parser; can parse any CFG.
Writing a grammar for an Earley parser is easy.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 35 / 47

http://tratt.net/laurie/


Example

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 36 / 47

http://tratt.net/laurie/


Error reporting (1)

Another problem with new syntax: error reporting goes out of the
window.
Languages with macro systems provide little or no error reporting.
DSL development is intolerable without accurate error reporting.

Converge has evolved a unique approach to error reporting.
Errors identify file name, line number, and column numbers.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 37 / 47

http://tratt.net/laurie/


Error reporting (1)

Another problem with new syntax: error reporting goes out of the
window.
Languages with macro systems provide little or no error reporting.
DSL development is intolerable without accurate error reporting.
Converge has evolved a unique approach to error reporting.
Errors identify file name, line number, and column numbers.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 37 / 47

http://tratt.net/laurie/


Error reporting (2)

‘Src info’ a (src path, src offset, src len) triple.
‘Src info’ concept pervasive: tokenizer, parser, ASTs, bytecode
generator, and VM.
Every token, AST element, and bytecode instruction associated
with one or more src infos. Trivial to pinpoint errors as having
occurred within a DSL block.
Users can add extra src info to AST elements in various ways.
e.g. To associate the AST built by a quasi-quote with both the
quasi-quote and a position in a DSL, use this syntax:

[<node[1].src_infos>| ${foo}[0] |]

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 38 / 47

http://tratt.net/laurie/


Integrated expression language

Hudak noted: as DSLs evolve they increasingly resemble a GPL.
Many stand alone DSLs have hackish, buggy, expression
languages.

If the standard Converge tokenizer is used for a DSL, Converge’s
expression language can be embedded within the DSL.
Code reuse at its best!

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 39 / 47

http://tratt.net/laurie/


Integrated expression language

Hudak noted: as DSLs evolve they increasingly resemble a GPL.
Many stand alone DSLs have hackish, buggy, expression
languages.
If the standard Converge tokenizer is used for a DSL, Converge’s
expression language can be embedded within the DSL.
Code reuse at its best!

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 39 / 47

http://tratt.net/laurie/


The Converge DSL process

Converge does not mandate a process, but the following naturally
presents itself:

1 Use the Converge tokenizer.

2 Write a CFG.
3 Write a translation class (from parse tree to AST).
4 Test, debug, modify etc.
5 Deploy finished DSL.

Converge gives you huge assistance for everything but step 5!

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 40 / 47

http://tratt.net/laurie/


The Converge DSL process

Converge does not mandate a process, but the following naturally
presents itself:

1 Use the Converge tokenizer.
2 Write a CFG.

3 Write a translation class (from parse tree to AST).
4 Test, debug, modify etc.
5 Deploy finished DSL.

Converge gives you huge assistance for everything but step 5!

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 40 / 47

http://tratt.net/laurie/


The Converge DSL process

Converge does not mandate a process, but the following naturally
presents itself:

1 Use the Converge tokenizer.
2 Write a CFG.
3 Write a translation class (from parse tree to AST).

4 Test, debug, modify etc.
5 Deploy finished DSL.

Converge gives you huge assistance for everything but step 5!

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 40 / 47

http://tratt.net/laurie/


The Converge DSL process

Converge does not mandate a process, but the following naturally
presents itself:

1 Use the Converge tokenizer.
2 Write a CFG.
3 Write a translation class (from parse tree to AST).
4 Test, debug, modify etc.

5 Deploy finished DSL.
Converge gives you huge assistance for everything but step 5!

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 40 / 47

http://tratt.net/laurie/


The Converge DSL process

Converge does not mandate a process, but the following naturally
presents itself:

1 Use the Converge tokenizer.
2 Write a CFG.
3 Write a translation class (from parse tree to AST).
4 Test, debug, modify etc.
5 Deploy finished DSL.

Converge gives you huge assistance for everything but step 5!

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 40 / 47

http://tratt.net/laurie/


The Converge DSL process

Converge does not mandate a process, but the following naturally
presents itself:

1 Use the Converge tokenizer.
2 Write a CFG.
3 Write a translation class (from parse tree to AST).
4 Test, debug, modify etc.
5 Deploy finished DSL.

Converge gives you huge assistance for everything but step 5!

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 40 / 47

http://tratt.net/laurie/


Current state of affairs

Converge started circa 2004.
Converge 1.2 released July 2011.
Pre-built binaries for Linux / OpenBSD / OS X / Windows.
More at http://convergepl.org/.

Currently working on a new RPython-based VM: about 2/3
complete and about 4x faster than the old VM (aiming to get 6̃-8x
faster).
https://github.com/ltratt/converge/tree/pypyvm/pypyvm.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 41 / 47

http://convergepl.org
https://github.com/ltratt/converge/tree/pypyvm/pypyvm
http://tratt.net/laurie/


Current state of affairs

Converge started circa 2004.
Converge 1.2 released July 2011.
Pre-built binaries for Linux / OpenBSD / OS X / Windows.
More at http://convergepl.org/.
Currently working on a new RPython-based VM: about 2/3
complete and about 4x faster than the old VM (aiming to get 6̃-8x
faster).
https://github.com/ltratt/converge/tree/pypyvm/pypyvm.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 41 / 47

http://convergepl.org
https://github.com/ltratt/converge/tree/pypyvm/pypyvm
http://tratt.net/laurie/


Part IV

Part IV: The future

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 42 / 47

http://tratt.net/laurie/


Parsing

What we want: arbitrary composition of languages.

But we fail at step 1: parsing. Why?
The union of 2 LR-compatible grammars may not be
LR-compatible (similarly LL etc.).
But e.g. Earley parsing can parse any CFG. Problem solved?
Composing known unambiguous grammars may lead to an
ambiguous grammar...
...but we can’t statically uncover ambiguity for CFGs in general.
Always worried that the next input will cause unrecoverable
ambiguity.
PEGs are inexpressive (no arbitrary left-recursion).
As far as I can tell, no good solution known.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 43 / 47

http://tratt.net/laurie/


Parsing

What we want: arbitrary composition of languages.
But we fail at step 1: parsing. Why?

The union of 2 LR-compatible grammars may not be
LR-compatible (similarly LL etc.).
But e.g. Earley parsing can parse any CFG. Problem solved?
Composing known unambiguous grammars may lead to an
ambiguous grammar...
...but we can’t statically uncover ambiguity for CFGs in general.
Always worried that the next input will cause unrecoverable
ambiguity.
PEGs are inexpressive (no arbitrary left-recursion).
As far as I can tell, no good solution known.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 43 / 47

http://tratt.net/laurie/


Parsing

What we want: arbitrary composition of languages.
But we fail at step 1: parsing. Why?
The union of 2 LR-compatible grammars may not be
LR-compatible (similarly LL etc.).

But e.g. Earley parsing can parse any CFG. Problem solved?
Composing known unambiguous grammars may lead to an
ambiguous grammar...
...but we can’t statically uncover ambiguity for CFGs in general.
Always worried that the next input will cause unrecoverable
ambiguity.
PEGs are inexpressive (no arbitrary left-recursion).
As far as I can tell, no good solution known.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 43 / 47

http://tratt.net/laurie/


Parsing

What we want: arbitrary composition of languages.
But we fail at step 1: parsing. Why?
The union of 2 LR-compatible grammars may not be
LR-compatible (similarly LL etc.).
But e.g. Earley parsing can parse any CFG. Problem solved?

Composing known unambiguous grammars may lead to an
ambiguous grammar...
...but we can’t statically uncover ambiguity for CFGs in general.
Always worried that the next input will cause unrecoverable
ambiguity.
PEGs are inexpressive (no arbitrary left-recursion).
As far as I can tell, no good solution known.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 43 / 47

http://tratt.net/laurie/


Parsing

What we want: arbitrary composition of languages.
But we fail at step 1: parsing. Why?
The union of 2 LR-compatible grammars may not be
LR-compatible (similarly LL etc.).
But e.g. Earley parsing can parse any CFG. Problem solved?
Composing known unambiguous grammars may lead to an
ambiguous grammar...
...but we can’t statically uncover ambiguity for CFGs in general.
Always worried that the next input will cause unrecoverable
ambiguity.

PEGs are inexpressive (no arbitrary left-recursion).
As far as I can tell, no good solution known.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 43 / 47

http://tratt.net/laurie/


Parsing

What we want: arbitrary composition of languages.
But we fail at step 1: parsing. Why?
The union of 2 LR-compatible grammars may not be
LR-compatible (similarly LL etc.).
But e.g. Earley parsing can parse any CFG. Problem solved?
Composing known unambiguous grammars may lead to an
ambiguous grammar...
...but we can’t statically uncover ambiguity for CFGs in general.
Always worried that the next input will cause unrecoverable
ambiguity.
PEGs are inexpressive (no arbitrary left-recursion).

As far as I can tell, no good solution known.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 43 / 47

http://tratt.net/laurie/


Parsing

What we want: arbitrary composition of languages.
But we fail at step 1: parsing. Why?
The union of 2 LR-compatible grammars may not be
LR-compatible (similarly LL etc.).
But e.g. Earley parsing can parse any CFG. Problem solved?
Composing known unambiguous grammars may lead to an
ambiguous grammar...
...but we can’t statically uncover ambiguity for CFGs in general.
Always worried that the next input will cause unrecoverable
ambiguity.
PEGs are inexpressive (no arbitrary left-recursion).
As far as I can tell, no good solution known.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 43 / 47

http://tratt.net/laurie/


Beyond parsing

Syntax directed editing has no composition problems...
...but tried and rejected in the 80s.

MPS shows it can be (at least) semi-palatable.
[Maybe the Intentional tool, if we ever get to play with it.]

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 44 / 47

http://tratt.net/laurie/


Beyond parsing

Syntax directed editing has no composition problems...
...but tried and rejected in the 80s.
MPS shows it can be (at least) semi-palatable.
[Maybe the Intentional tool, if we ever get to play with it.]

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 44 / 47

http://tratt.net/laurie/


Composition

Next major challenge: composing language implementations.
Not Java + C++ (yet).
What are the correct units to break languages down into? How to
integrate compilers? What types of languages are mutually
exclusive? What about efficiency? Nice editors? etc. etc.
Initially a language design issue (language semantics to follow?).

My attempt: Foundries.
Unifying compilers and editors; languages, programs, and editors
interact with meta-programming.
Attempt to tackle the problem bit by bit, bottom up.
Current status: barely started.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 45 / 47

http://tratt.net/laurie/


Composition

Next major challenge: composing language implementations.
Not Java + C++ (yet).
What are the correct units to break languages down into? How to
integrate compilers? What types of languages are mutually
exclusive? What about efficiency? Nice editors? etc. etc.
Initially a language design issue (language semantics to follow?).
My attempt: Foundries.
Unifying compilers and editors; languages, programs, and editors
interact with meta-programming.
Attempt to tackle the problem bit by bit, bottom up.
Current status:

barely started.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 45 / 47

http://tratt.net/laurie/


Composition

Next major challenge: composing language implementations.
Not Java + C++ (yet).
What are the correct units to break languages down into? How to
integrate compilers? What types of languages are mutually
exclusive? What about efficiency? Nice editors? etc. etc.
Initially a language design issue (language semantics to follow?).
My attempt: Foundries.
Unifying compilers and editors; languages, programs, and editors
interact with meta-programming.
Attempt to tackle the problem bit by bit, bottom up.
Current status: barely started.

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 45 / 47

http://tratt.net/laurie/


Further reading

Fowler: Language workbenches
Stahl, Völter: Model-Driven Software Development
Vasudevan, Tratt: Comparative study of DSL tools

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 46 / 47

http://martinfowler.com/articles/languageWorkbench.html
http://www.voelter.de/publications/books-mdsd-en.html
http://tratt.net/laurie/research/publications/
http://tratt.net/laurie/


Summary

There are more DSLs in existence than we first think...
...and there will be a lot more.

When DSLs are the right tool, they can lead to real savings.
But we’re still searching for more general tooling.

Thanks for listening

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 47 / 47

http://tratt.net/laurie/


Summary

There are more DSLs in existence than we first think...
...and there will be a lot more.
When DSLs are the right tool, they can lead to real savings.
But we’re still searching for more general tooling.

Thanks for listening

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 47 / 47

http://tratt.net/laurie/


Summary

There are more DSLs in existence than we first think...
...and there will be a lot more.
When DSLs are the right tool, they can lead to real savings.
But we’re still searching for more general tooling.

Thanks for listening

L. Tratt http://tratt.net/laurie/ DSLs 2011/11/22 47 / 47

http://tratt.net/laurie/

