
Good Design

• Many of these issues true of (come from)
structured and OO approaches.
– In addition also been applied to other areas,

e.g., coupling in roles.

• Mainly heuristics (though suggests
measures) for:
– Cohesion

– Coupling

– Connascence

Cohesion and Coupling: Less
than ideal

Aardvark
Farm

Blammo
Arms Inc.

Blammo
Workers
Housing

Aardvark
Foodstuffs

Upper Scruttock Lowerville

Motorway

Heavy Traffic

A Better Solution. More
Cohesive and less Coupled

Aardvark
Farm

Blammo
Arms Inc.

Blammo
Workers
Housing

Aardvark
Foodstuffs

Upper Scruttock Lowerville

Motorway

 No Traffic

Cohesion

• Strength of functional ‘relatedness’ of
activities.
– An activity is an instruction, or a group of

instructions, a data definition or a call to other
services.

– Designers should create strong, highly cohesive
services whose elements are strongly and
genuinely related to each other.

Cohesion in Objects

• How well the developer has partitioned a
system into objects.

• Making sure objects are strong cohesive
abstractions may also minimise coupling.
– Cohesive objects are built through

anthropomorphism techniques.
– Most existing cohesion theory is based upon

functional paradigms.

Service Cohesion

• The principles of cohesion are typically
applied at the individual service level.

• Develop object services that fulfill a well
defined role.
– E.g., a service that calculates interest on a given

sum is good.
– A service that calculates interest, washes milk

bottles and parks a hard disk all at once is not.

Levels of Cohesion

FUNCTIONAL

SEQUENTIAL

COMMUNICATIONAL

PROCEDURAL

TEMPORAL

LOGICAL

COINCIDENTAL

 BEST
MAINTAINABILITY

LESS THAN IDEAL

BLACK BOX

TRANSPARENT BOX

GREY BOX

Functionally Cohesive

• Elements contribute to the execution of one
problem related task
– E.g., Start_Pump, Make_Reservation, Eat_Fish etc.

• Crisp functional abstraction that has a well
defined role.

• Easiest and to maintain ...
– however, it is not always possible to define services

that fulfill a single task or role.

Sequentially Cohesive

• Objects encapsulate
activities where the
output from one
activity is the input
to the next.

 WAKE UP

 EAT BREAKFAST

 KICK CAT

Functionally Cohesive Services

• A sequentially cohesive service reduces
coupling by encapsulating related
functionality.

• Arguably as maintainable as a functionally
cohesive object.

• However, may not be as good for reuse as it
may contain activities that will not generally
be useful together.

Communicationally Cohesive

• Elements contribute to activities that use the
same input or output data.

• E.g., given an ISBN number as input to a
service...
– FIND TITLE OF BOOK
– FIND PRICE OF BOOK

– FIND PUBLISHER OF BOOK

Comparing Cohesion

• Superficially sequential & communicational
cohesion looks similar
– However, the primary difference is that a

sequential service is an assembly line...
– ...where control flow must move in a particular

order.
– In a communicationally cohesive service the

ordering of the functionality is unimportant.

Communicationally Cohesive
Services

• Typically less maintainable than functional or
sequentially related activities.

• Why? Temptation to intermingle the code of all
activities defined within the service.
– ...if change is required it can often impact on other

activities undertaken by that service.

– Solution: Often better design to split up a
communicationally cohesive service into n
functionally cohesive ones.

Procedurally Cohesive

• Composed of pieces
of functionality that
are sequentially
organised but...
– otherwise bear little

relationship to each
other.

 WRITE LETTER

 WALK AARDVARK

 EAT LUNCH

Temporally Cohesive

• Sequentially
organises activities
that are related by
time.

 PUT OUT CAT

 SWITCH OFF LIGHTS

 GO TO BED

Temporal and Procedural
Maintenance

• Temporal & procedurally cohesive services
tend to intermingle the code for each of their
respective activities...
– This makes the separation of individual activities

difficult, and hence does not reduce the impact of
change.

– Making a change in temporal or procedural
ordering means a significant re-structuring of the
service implementation.

Logically Cohesive

• Encompasses a set of activities in the same
general ‘category’.
– The activity to be executed is usually chosen by an

input parameter.

• E.g.,. Input a number for the required activity
– Eat Sausage

– Eat Snail

– Eat Gorgonzola

Coincidentally Cohesive

• Activities are wholly unrelated. E.g.,
1. EAT LUNCH

2. BLAST ALIENS

3. CLIMB MOUNTAIN

4. EXPLODE

– Difficult to understand.

– Difficult to disentangle - code shared by some or all
activities in the function.

– Consequently difficult and expensive to maintain.

Identifying Cohesion

• Write a sentence that describes what the
service does -
– The structure of the sentence often gives away

the level of cohesion the service supports:
– FUNCTIONAL COHESION : A service

fulfilling a single function can usually be
summed up by a precise verb or verb-object
name.

• E.g. ADD_INTEREST.

Finding and Classifying
Cohesion

• SEQUENTIAL: A number of assembly line activities within
a service usually demonstrate sequential processing
– E.g., CONSTRUCT_CAR, UPDATE_AND_VALIDATE_ID

• COMMUNICATIONAL: A number of non-sequential
activities working on the same data demonstrate this form of
cohesion.
– CALCULATE_MONTHLY_AND_YEARLY_VAT_RATE

• PROCEDURAL: look for procedural names.
– E.g., LOOP_ROUTINE , STARTING_THE_DAY

Finding Further Classes of
Cohesion

• TEMPORAL: Names that have time related semantics
are a dead give-away.

– E.g., START_UP , DO_AT_MIDNIGHT

• LOGICAL: Look for general ‘all purpose’ services that
do different things with different inputs.
– E.g. TRAVEL_BY (mode), EAT_SCOFF (food type)

• COINCIDENTAL: The describing name doesn't make
sense, nor does any clear functional description.

Coupling

Left Speaker Right Speaker

 Amplifier

Turntable,
Radio & CD

Power

Amp
Power
Supply

LOOSELY COUPLED

Unsatisfactory Coupling

Left Speaker Right Speaker

 Amplifier

Turntable,
Radio & CD

Power

Amp
Power
Supply

UNSATISFACTORY COUPLING - WHY?

Really bad Coupling

• SPEAKERS ARE TOO CLOSE TOGETHER - AND I CAN’T
SEPARATE THEM.

• THE BOX WON'T FIT ON THE SHELF - ITS TOO BIG..

– AND WORST OF ALL THE TURNTABLE MOTOR
CAUSES THE AMP TO HUM.

Turntable , Speakers , CD , Amplifier,

Amp power supply , Radio

Coupling is..

• The degree of interdependence between two objects.

• Minimise coupling, and by doing so make each object
as independent as possible.

• Low coupling indicates a well-partitioned system and
can be attained by:
– eliminating unnecessary relationships,

– reducing the number of unnecessary relationships,

– easing the ‘tightness’ of necessary relationships.

Why Coupling Works

• Fewer connections between objects lessens the
chance of a ‘ripple effect’ (a fault in one module
causing errors in another).

• Low coupling means that a change in one object is
unlikely to require change in another.
– When maintaining an object don't want to worry (or

know) about the implementation of other objects.

Principles for Coupling

• Create:
– Narrow (as opposed to broad) connections.
– Direct (as opposed to indirect) connections.
– Local (as opposed to remote) connections.
– Obvious (as opposed to obscure) connections.
– Flexible (as opposed to rigid) connections.

Narrow Connections

• Breadth of interface is essentially the number of
connections that link two objects -

– ideally dialogue between objects should be as ‘narrow’
as possible.

– The number of messages an object sends to a given
object (and the number of parameters) should be kept to
a minimum.

Direct Connections

• Coupling between two objects is more
understandable (and less complex) if the developer
does not have to refer to other objects to
understand the original connection.

Local Connections

• In non-OO systems modules should communicate
through parameter passing not through the use of
global data structures.

Global Data

Obvious Connections?

• Make sure that data passed has a name and
structure applicable to the service(s) in
which it is employed

• Build cohesive data structures which have
obvious relevance in the context.

Flexible Connections

• Links between objects often have to be
changed as a consequence of maintenance.
– Costly if links are ‘rigid’.

• ‘An example of a rigid connection would be one in which a
designer had decided that a module should collect the
information it needed from a fixed location in memory...

• ..In that case if you decided to reuse the module in a different
part of the system (or port it to another hardware architecture!)
you would either have to goof up the previous use of the
memory location or write some ugly little wart of code to get
around the problem’ [Page Jones].

Wired Coupling

• A wired architecture is where all message
links between objects are explicitly captured..
– ..even though objects may be created &

destroyed throughout the lifetime of the system.

Wireless Coupling

• A wireless architecture is where objects may
potentially communicate with other objects
by passing flags.
– In C++ these would typically be class pointers.

Any object may
communicate with
any other

Types of Coupling
Good

Bad

NORMAL
Data
Stamp
Control

COMMON

CONTENT

Data Coupling

• Most obvious and common form.
– Two objects pass information through the use of parameters

• Data coupling is local (it passes values directly between
two objects).
– If correctly used the data passed is used directly by the calling

and called service.

– Flexible and maintainable, as long as a service accepts the
same parameters it can be changed without adverse
consequences.

Guidelines: Narrow please

• Small is beautiful. Keep the number of parameters to
a minimum if at all possible.
– A mob of different parameters crossing an interface is

more likely to increase the possibility of errors.

– Vast amounts of parameters sent to a single service often
obscure both its purpose and functionality.

– In other words build interfaces to be as narrow as possible.

Guidelines: No tramp data

• Avoid the use of ‘tramp data’.
– Bits of information that are passed from object

to object (without being used) until they reach
an eventual destination.

Mydata

Mydata

Mydata

A B

C

D

Tramp Data is passed
from A through B & C
to D

Stamp Coupling

• Two objects are stamp coupled if they pass
each other composite data forms e.g.
records or structs
– E.g., a Customer record that includes name,

number, age, favourite pizza etc.

• Stamp coupling is fine, but the composite
data forms add a slight degree of obscurity
to the design.

Stamp Warning

• Never pass composite data to an object that needs
only one or two fields from that data.
– Broadens the interface, obscures the design, and (as a

consequence) can increase maintenance costs.

– There is also the possibility that an object service could
inadvertently manipulate (and change) values that it
doesn't use.

– In these cases it is better to send the data as individual
parameters.

No Bundling please

• If two objects are data coupled, but share a broad
interface (i.e., they pass vast amounts of parameters
between them) the temptation is to aggregate these into
a single data structure.
– E.g., could aggregate the integers ID_no, age and shoe size

into a struct called ‘stuff’.

• This is called bundling.
– Bundling is undesirable, obscure and un-hygenic.

– Don't do it just to reduce coupling.

Control Coupling

• One object passes the other a piece of data intended
to control its internal logic
– Usually symptomatic of logical cohesion.

– E.g., a ‘travel_by’ service that accepts a data flag
representing CAR , BOAT, PLANE , etc. from another
object.

– Leads to indirectness and obscurity.

– Usually a result of poor partitioning -
• e.g., for one object to ‘control’ another it implicitly knows

details of its implementation.

Common Coupling
• Two modules share a common data structure.

– Not applicable to Coad & Yourdon - but may be relevant
to C++.

– Violates basic principles of encapsulation and modularity.
• Erroneous updating of global data by a module has ripple effects

on all other modules that use it.

• Such modules are obscure, difficult to maintain, difficult to
reuse, any changes to the global data will necessitate change in
all modules that use it.

Content (Pathological) Coupling

• Where control flow leaps merrily from object to
object through the liberal application of GOTO
statements -
– The sequence of execution may jump from one service

to the the middle of another (encapsulated by another
class-&-object!)

– Makes a mockery of the entire object-oriented design
process..

– ..and forces an enormous degree of interdependence
between objects.

Connascence

• Page-Jones proposes the generalisation of
both OO coupling and cohesion into a
single measurement called Connascence...
– ‘I say that two elements of software are

Connascent if they are 'born together' in the
sense that they somehow share the same
destiny’.

– Note similar move to single measure in RADs.

What is Connascence?

• Page Jones again:
– ‘I define two software elements A and B to be

connascent if there is at least one change that
could be made to A that would necessitate a
change in B in order to preserve overall
correctness’

– ‘Eliminate any unnecessary connascence and
then minimise connascence across
encapsulation boundaries by minimising
connascence within encapsulation boundaries’.

Type Connascence

int x;

 ...other statements...

 x = 7;

• ..a change to the type i.e., int to float will
impact the later assignment statement.
– In C++ this would compile but will be incorrectly

typed (probably).

Name Connascence

int x;

 ...other statements...

 x = 7;

• ..a change to the name i.e. x to j will impact
all connascent points in the program based
on the variable name x.

Other Forms

• Value - two software elements must contain the
same values

• Algorithm - two software elements must agree on
some common algorithm for their correct
execution.

• Semantic - two software elements must have
identical semantic as opposed to syntactic
structure.

Summary

• Examined forms and problems of Cohesion.

• Examined forms and problems of Coupling

• Described unifying idea of Connascence.

