
1

Interaction Models: Sequence
and Collaboration

• Consider the family of UML diagrams

• Dynamic models (a UML view)

• Interaction models
– Collaboration diagrams
– Sequence diagrams
– Alternatives?

• Conclusions

2

Some UML Models

• Use cases
• Class diagrams (& object diagrams)

• State charts
• Interaction diagrams (sequence and collaboration)

(Considered dynamic)
• Activity diagrams (Considered dynamic)
• Implementation diagrams (component &

deployment). Packages and subsystems

3

Dynamic in UML?

• Use case modelling.

• Interaction modelling:
– Collaboration diagram

– Sequence diagram

• State modelling.
– Statechart

– Activity Diagram

Process modellers may consider all static

4

Collaboration

• Objects within systems communicate with each
other; they send messages to each other.

• A message is typically just an operation (method)
call that one object invokes on another object.

• Communication among a set of objects in order to
generate some function is called an interaction.

5

Collaboration Diagram
• Collaboration diagrams describe how objects

interact.

• Collaboration diagrams focus on space.

• This means that the relationships (links)
between the objects (in space) are of particular
interest.

• A collaboration diagram is isomorphic (to a
degree) with a sequence diagram.

6

Collaboration Diagram Example

theBook : Book

theCopy : CopytheLibraryMember:
LibraryMember

borrow (the copy)

1 : okToBorrow

2 : borrow

2.1 : borrowed

aMember : bookBorrower

7

Activations

• For procedural interactions:
– One object active (computing) at a time.

– Object activated on receipt of message.
– Will (eventually) send response. During this

live activation period may:
• Carry out computation OR

• Send further messages (passing control)

– Reflected in nested numbering

8

Collaboration: Object existence

• Objects that are created during a collaboration are
designated with {new} and objects that are
destroyed in a collaboration are designated by the
constraint {destroyed}.

• Objects that are both created and destroyed during
the same collaboration are designated as
{transient} which is the same as both {new}
{destroyed}

9

Existence Example

:MainWindow
NewCustomer()

:Customer{new}
[free memory] 1:Create()

:CustomerWindow
{transient}

{parameter}
2: Create()

3: Show(Customer)

3.1: Update(data)

10

Arrows:
Message types notation

Synchronous

Asynchronous

Simple

Synchronous with
immediate return

11

Meaning

• Synchronous: a nested flow of control, typically implemented
as an operation call.
– The operation that handles the message is completed before the

caller resumes execution.

• Asynchronous: There is no explicit return to the caller.
– The sender continues to execute after sending the message without

waiting for it to be handled. Used in real-time systems.

• Simple: Shows that control is passed from one object to
another without showing any detail.
– Also used to show the return of a synchronous message.

12

Sequence

• Sequence diagrams illustrate how objects interact
with each other to perform some function.

• They focus on message sequences - how messages
are sent and received between a number of objects.

• Sequence diagrams have 2 axes:
1. Horizontal - the set of interacting objects

2. Vertical - time order

• Sequence diagrams can be used to “design” use
case descriptions (OOSE approach)!

13

Sequence diagrams and use cases

Time

use case
description
written
down
here

System
Border

Object
One

Object
Two

Object
Three

Object
Four

14

Use Case Design - Sequence
Diagram Deposit item

Customer presses the start button

The sensors are activated

DO

New deposit item is inserted

Measure and check if this kind
of item is acceptable.

IF not found THEN create a
new daily Amount:=

daily Amount + 1

noReceived:=noReceived + 1

WHILE items are deposited

newItem

activate

start

System
border

Customer
Panel

Deposit Item
Receiver

Receipt
Basis

create

item()
exists()

increment

insertItem(item)

15

Sequence and Use case
comments

• Interesting that even OOSE, and by
implication UML sees the need for
sequencing issues to be addressed for use
cases
– even though descriptions can’t address them.

• Of course we might suggest other ways (e.g.,
process models) to design our use cases, and
include similar issues.

16

Sequence Forms

• Sequence diagrams can be used in 2 forms:
1. Instance or 2. Generic

• Instance Sequence Diagram:
– describes a specific scenario in detail

– it documents one possible interaction.

– The instance form does not have any conditions,
branches or loops.

• Generic Sequence Diagram:
– a use case description with alternative courses.

17

Instance Sequence Diagram

:CustomerWindow :Customer

Change(CustomerData)

UpdateCustomer(Customer data)

18

Generic Sequence Diagram

:Computer :PrinterServer :Printer :Queue
Print(file)

Print(file) [printer free]
Print(file)

[printer busy]
Store(file)

19

Stair versus Fork

• Stair: contain all necessary functionality in only
one control object and reuse the object either by
inheritance or polymorphism.

• Fork: Or make things slightly easier to the novice
and just call the necessary object with its localised
behaviour.

• Some might call it nit-picking or irrelevant but it is
a design issue to be thought about.

20

Sequence diagram shapes

Fork - centralised Stair - decentralised

• operations can change
order

• new operations may be
added

• Operations have strong connections

• performed in same order

• behaviour is encapsulated

21

Concurrency
In some systems,
objects run
concurrently,
each with its own
thread of control.
If the system uses
concurrent
objects, it is
shown by
activation, by
asynchronous
messages and by
active objects.

Object A

activate

Object B

22

Creation and Destruction

Object
CreationMessage

DestructionMessage

23

Other stuff

Object A Object B

Message
 b
{b1 - b < 1 sec}

 b1

oper()

Message with Transmission Time

Recursion:

24

Conclusion: Interaction Diagrams

• Collaboration diagrams show the links between objects and the
numbered sequence of messages - they show SPACE.

• Sequence diagrams are isomorphic to Collaboration diagrams
in that they show messages between objects. But sequence
diagrams are more concerned with TIME.

• Both diagrams are important to modelling the behavioural
design of the system and are excellent for validation and
testing.

