
From Process Model to Problem Frame – A Position Paper

Karl Cox Keith Phalp
CSE, University of New South Wales,

National ICT Australia
karlc@cse.unsw.edu.au

ESERG,
Bournemouth University, UK

kphalp@bmth.ac.uk

Abstract

Jackson’s Problem Frame (PF) approach presumes
that some knowledge of the application domain and
context has been gathered so that a Problem Frame can
be determined. However, the identification of aspects of
the problem, and hence, its appropriate ‘framing’ is
recognized as a difficult task. One way to help describe
the problem context is through process modelling. Once
contextual information has been elicited, and explicitly
described, an understanding of what problems need to be
solved will emerge. However, this use of process models
to inform requirements is often rather ad-hoc. Hence, this
position paper proposes guidance for directly deriving
Problem Frames from business process models. The
paper presents an outline method for PF derivation, and
argues why this may be useful to the developer. Finally,
the authors discuss the issues involved in attempting to
derive a more formal mapping between Problem Frames
and business process models.

1. Introduction

In recent years many software developers have
produced models of client business processes [1] as an
up-stream software development phase [2]. However,
although it is generally agreed that such process models
are valuable in informing requirements, the exact nature
of how the process model maps to subsequent
(requirements) phases is less clear.

Some authors have suggested what might be termed
‘process approaches’ [3] to development methods, but
these tend to adopt particular design tactics, where the
process model replaces more ‘popular’ design notations.
Others have attempted to examine how process models
might map to existing approaches, for example, mapping
process models to formal approaches [4] or more latterly,
to use cases [5]. Although there is merit in these
approaches, one of the problems is that in methodological

terms they are implementation dependent. That is, they
assume a particular design approach, whether process
driven or more conventional (such as the UML) [6].

However, it would be particularly useful if process
models could be used to help partition and inform
requirements, without assuming a particular subsequent
approach to design. This leads on to the idea of
combination with Problem Frames [7]. Indeed, one of the
premises of the PF approach is that the proper ‘framing’
of the problem should suggest appropriate notations both
for requirements capture and design [8]. In addition, it is
also clear that whilst simple single frame problems may
often be correctly identified, the framing of real-world
problems is often far from trivial [9].

Therefore, in this paper we attempt to show how
process models might be used to inform the derivation of
Problem Frames. This would then allow process
knowledge to be used within requirements phases, and
would aid the, non-trivial, process of ‘framing’ problems.
As an exemplar notation, we use Role Activity Diagrams
(RAD) [10] a well-regarded process modelling notation.

1.1. Related work on problem frames

Related work on Problem Frames (PF) has focussed on
identifying what techniques are most useful to eliciting
and documenting requirements and specifications once
the PF is known [8, 11], and in attempting a formalization
of the PFs [12]. Current research is exploring the role PFs
have with aspects of software architecture [13]. These
works view the PF as already determined and present
ways to help subsequent development. Sikkel et al. [14]
propose a variant on the PF. They present a decision tree
to help determine what kind of business solution a
company might need, such as whether to opt for a COTS
product or to bolt on new functionality to the current
system. With regard to process modelling and problem
frames, there is, to our knowledge, no research currently
being conducted.

2. From process models to context diagrams:
a good starting place?

The step from process models to context diagrams is

not new [15]. Indeed, to map from a Role Activity
Diagram (RAD) to Jackson’s variant of the traditional
context diagram is straightforward. Table 1 shows the
components of both diagrams and how they map.

Table 1. Mapping RAD to context diagram
RAD Jackson Context Diagram

Role Domain of Interest / Machine
Interaction Interface

Action -

Customer Machine

Print Room
Staff

Get
applications

Notify Customer

Printers

Post
applications

print

Customer

Sign
application

Return application

Company

Bank

Apply for
Account

activate Customer
account

Machine

inform of new
account

send new
Customer pack

starter interaction

recipient interaction

action

Key

Figure 1. Example role activity diagram

As an example, figure 1 describes a RAD of a

simplified process of applying for an online share trading
account. This is mapped to a context diagram (figure 2).

Essentially the diagrams (figs. 1 and 2) are the same. In
fact, it can be conjectured that there is a loss of
information if we describe by context diagram alone.
There is no explicit representation of the internal actions
of the domains that are vital to the success of the
business. In figure 1, actions within roles are made

apparent (by black squares) – the Customer role action
‘sign application’. What is also required is a textual
description of each domain (not detailed in this paper).

Machine

Customer

Print
Room
Staff

Printer

Bank

A

Company
B

C

D

E

F

G

H

Figure 2. Context diagram

The interfaces between the domains can be made
explicit and are described in table 2. For example, for
interface A, CU!{…} means that the Customer domain is
responsible for the interaction with the Machine domain.

Table 2. Interfaces on the context diagram
Interface Description

A CU! {apply}
MA!{notification}

B PRS!{retrieve application}
C PRS!{print application}
D PRS!{post application}
E CU!{return application}
F CO!{activate account}
G MA!{new account details}
H BA!{welcome}

This indicates which domain is responsible for what,

that is, what role they play in the process. The next step
ought to be to consider how to determine the PFs. But
there is a problem here.

3. Problems mapping to problem frames?

The context diagram, as derived from the process
model, does not explicitly show the information the
problem frames might need. For example, if we have a
Workpiece frame, where in the context diagram or the
process model is there a design domain (other than the
machine)? The process model does not necessarily
describe what type of problems there might be – just the
way that the business works for this particular scenario.

As such, it is not clear whether we are describing
fundamental problem frames or decomposed ‘process-

oriented’ problem frames. Hence, there is a risk of simply
following the process through onto subsequent frames
without consideration of the ‘big picture’. That is,
bypassing the fundamental problem frames for the finer
details of transforming a process model into a set of
‘process frames’.

4. The frames

What, then, can be derived from a process model that
will determine the problem frames? Figure 1 shows the
Customer creating an online trading account. Thus, this is
a Workpiece problem frame (figure 3).

MachineCustomer Customer
Account

Account
Rules

Figure 3. Workpiece frame

It can be seen that the Customer Account domain in

figure 3 is not apparent in either the context diagram or
the RAD, though it is a fundamental (design) domain in
this problem. This shows that the mapping to the context
diagram from the RAD, though easy, does not necessarily
provide all of the information for the problem frame. (The
black dot indicates the Customer Account domain is
found within the Machine itself – it is a design domain.)
However, we can elicit this domain by further exploring
the nature of the account creation activity. This can be
achieved, for instance, by decomposing the RAD further,
revealing the details of the interaction. We can also
examine the interfaces within the context diagram.
Validating the account creation process with the
necessary stakeholders will verify that the Customer
Account domain is right – and of its legal status.

4.1. Further potential problem frames

There are at least two other frames identified through

further analysis of the problem domain (not shown): the
Commanded Behaviour frame allows the Customer to
manipulate their Customer Account online – transfer
funds, buy and sell stocks and shares. The third frame
would be an Information Frame. The Customer can check
the current stock prices on the Web Application.

These three core frames might need to be decomposed
further. For instance, how does the Web Application

show the stock prices? Perhaps a Connection frame is
required here.

5. Outline of a mapping

Process models do not necessarily convey the
information required to determine PFs, even when
mapped into context diagrams, because domains key to
the success of the PF approach are not always apparent,
particularly if the missing domains are design domains –
such as in a Workpiece. This makes the step from a
process to a PF view more complicated. We thus propose
initial guidelines to assist in this task. The guidelines are
rudimentary and are based upon our experiences thus far.
We will formalise them as our research continues. Table 3
describes the steps in this (iterative) process.

Table 3. RAD to problem frame

Step Action
1 Describe Role Activity Diagram
2 Identify outcomes of interactions
3 Identify potential domains from outcomes
4 Identify potential rules that govern interactions
5 Identify problem frames

The first step is to describe a process model (in our

case a Role Activity Diagram (RAD)). We note that
companies might have existing process models in other
notations, but choose, for now, to limit our guidance to
RADs.

Step two identifies the outcomes of interactions
between roles. In the above example, an outcome of the
‘apply for account’ interaction is the creation of a new
customer account.

As step three indicates, this outcome is then considered
as a potentially new domain. Each is asked:
• Is the outcome something that will be used, altered or

referred to a number of times from different
perspectives? In other words, a domain of interest.
That is, it is not simply a transient outcome. (The
Customer Account will be manipulated or referred to
through its lifetime by the Customer, the Bank, and
the Print Room Staff in different scenarios.)

• We use Bray’s domain taxonomy to determine its
type [11]. Is the domain a design domain? Inert? (We
can say that the Customer Account is something that
will be created and held within the machine and will
not change its state independently.) Other questions
are: is the domain static (not changeable with time in
any way), reactive (predictable), completely
controllable (programmable), partially predictable
(biddable) or entirely uncontrollable (autonomous)?

Step four explores what rules are in place to control
interactions. For instance, when the Customer applies for
the account, they have to enter required financial
information, such as current bank account details. The
financial credit status of the Customer, we discover, is
electronically checked by connecting to a credit agency.
Legal requirements also govern the application procedure
and these have to be discovered. The machine then steps
the Customer through a precisely defined application
procedure.

Step five then identifies the PF. For example, once the
RAD is described, the Customer Account has been
identified as an outcome of the interactions, and the legal
and financial requirements (the rules) are determined, we
can state: We have an inert, design domain (Customer
Account) – created by the Customer and considered a
legal document (legal / financial rules). We, therefore,
have a Workpiece problem frame.

6. Discussion

This position paper outlines a way to derive
(appropriate) Problem Frames from process models. The
method is illustrated by describing the derivation of a
Workpiece frame from a Role Activity Diagram. It is
shown that although traditional mapping from business
processes to context diagrams might be viable, as an
intermediary step towards a problem frame, such a
mapping has potential pitfalls because important design
domains are often missed. Therefore, we can bypass this
step and consider the problem frames direct from the
process model. Key to eliciting further domains, vital to
the identification of the problem frames, is exploring the
interactions between roles for outcomes (potential
domains) and rules (potential requirements or contraints
governing use or control of the domains).

6.1. Further work and potential issues

Our goal is to provide a complete, formalised set of
guidelines to help determine problem frames from process
models. However, there are some ‘mapping’ issues to be
addressed.

Is it necessary for a complete mapping to be produced?
We are not saying that Role Activity Diagrams and PFs
are isomorphic, in the way UML sequence and
collaboration diagrams are. For example, it is likely that
in moving from the RAD to the PF, some information is
lost. When changes are made to the requirements some of
these may impact the business model, but (if they do not
concern the interfaces between the domains or the rules
governing the frame) the frames may be unaltered. Hence,

it may be necessary to consider a multiple mapping
among business model, problem frame and requirements.
Indeed, similar issues have been described among process
models, use cases and class diagrams [5].

This also brings into question whether a direct
mapping is most beneficial or whether it may be
necessary to use an intermediate notation. Again lessons
may be drawn from process modelling where notations,
such as POSD, have been used in this manner [2].

Finally, we note, that although well regarded, the
existing PFs are seen as a starting point, and that certain
contexts may yet suggest the need for further frames.

7. References

[1] P. Henderson, “Software Processes are Business Processes
Too”, Third International Conference on the Software Process,
IEEE Comp. Soc. Press, Reston, Virginia, USA, Oct 1994.
[2] K.T. Phalp, “The CAP Framework for Business Process
Modelling”, Information and Software Technology, 40 (13)
1998, pp. 731-744.
[3] Warboys, B, Kawalek, P, Robertson, I. and M Greenwood,
Business Information Systems, McGraw Hill, 1999.
[4] G. Abeysinghe and K.T. Phalp, “Combining Process
Modelling Methods”, Information and Software Technology,
vol. 39, num. 2, 1997, pp. 107-124.
[5] K.T. Phalp and K. Cox, “Guiding Use Case Driven
Requirements and Analysis”, 7th Int. Conf. on Object-Oriented
Information Systems, Springer, LNCS, Calgary, August 27th-
29th 2001, pp.329-332.
[6] Jacobson, I., Booch, G., and J. Rumbaugh, The Unified
Software Development Process, Addison-Wesley, 1999.
[7] Jackson, M., Problem Frames, Addison-Welsey, 2001.
[8] Kovitz, B., Practical Software Requirements, Manning,
1999.
[9] K. Phalp, and K. Cox, “Picking the Right Problem Frame -
An Empirical Study”, Empirical Software Engineering Journal,
2000, 5(3), pp. 215-228.
[10] Ould, M., Business Processes, Wiley, Chichester, 1995.
[11] Bray, I., An Introduction to Requirements Engineering,
Addison-Wesley, 2002.
[12] D. Bjorner, S. Koussoube, R. Noussi, and G. Satchok,
“Michael Jackson's Problem Frames: Towards Methodological
Principles of Selecting and Applying Formal Software
Development Techniques and Tools”, 1st IEEE Int Conf on
Formal Engineering Methods, IEEE Comp Soc Press,
Hiroshima, Japan, 12-14 November, pp. 263-270.
[13] J. Hall, M. Jackson, R. Laney, B. Nuseibeh, and L.
Rapanotti, “Relating Software Requirements and Architectures
using Problem Frames”, RE'02, IEEE Computer Society Press,
Essen, Germany, Sept 2002, pp. 137-144.
[14] K. Sikkel, R. Wieringa, and R. Engmann, “A Case Base for
Requirements Engineering: Problem Categories and Solution
Techniques”, REFSQ'2000, Stockholm, Sweden, 5-6 June 2000.
[15] Britton, C. and J. Doake, Software System Development: a
gentle introduction, McGraw-Hill, 1993.

