
www.bournemouth.ac.uk

Estimation and Prediction in
Computing

Dr Keith Phalp

SSRC: Software Systems Research Centre Software Project Management

Questions and Overview

• What is estimation (a recap – hopefully)?
• Why do we need (usually cost) estimation?
• Why is estimation difficult for computing (as opposed to other

engineering disciplines)?
• What are the main approaches which have been used

(historically, where you worked).
• Which are more generic (can be applied widely)?
• Summary of techniques.
• An estimation exercise.
• Extras: Planning and delivery of estimation.

SSRC: Software Systems Research Centre Software Project Management

Cost Estimation

• Estimation in Computing is ‘typically’ (historically) about
estimating project costs, and related durations.

• Prediction of the “most likely” value (s) (that’s the theory).
• Many input variables (often referred to as cost drivers).
• Output in terms of effort (i.e., person hours / months / years).

• Different development environments (ideally) determine which
variables included in the cost value.

• Potential for over and under estimates
• trick is not by too much (20 times under for example).
• Do you think over / under estimating is roughly equal?

SSRC: Software Systems Research Centre Software Project Management

Why we need to estimate

• Lots of sources for similar figures, but one report shows that:
• 55% of projects over budget
• 53% of projects cost 189% more than initial estimates (Standish

Report(1994))
• This is actually one of the more ‘positive’ sets of reports,

others have much higher ‘failure rates’, for projects.
• General consensus is that things haven’t really improved (continue to

have high profile examples).
• Need to make predictions in order to plan and control

computing projects, e.g. effort, number of features, defects and
reliability, capacity, availability, ….

SSRC: Software Systems Research Centre Software Project Management

What we need to estimate

• Bottom line: we need to know total costs, plus components of
the total:
• Labour (Effort) – usually the major cost
• Equipment (Computers, Software, ...)
• Consumables
• Expenses
• Subcontracts
• Overhead costs
• Etc..

• Also need to separate out (why)
• Development or project costs.
• Project timescales and staffing required for the project
• Is double effort double time or double people or neither?

SSRC: Software Systems Research Centre Software Project Management

Diseconomies of scale

• Productivity levels tend to decrease as projects get larger.
• Engineers spend relatively more time communicating.
• Relatively more design and integration activity is required, since there

are more component parts.
• Relatively more effort is spent in verification and validation.
• The management effort per engineer increases.

• Also evidence of economies of scale in some organisations.
• What happens if I had more staff to a project which is

running late? (Why might this be?)
• Therefore, important to get it right at the beginning.

• Though also problems with trying to estimate too early - what might
these be?

SSRC: Software Systems Research Centre Software Project Management

Estimation in Computing

• Within the computing context the majority of our projects are
‘one-offs’, a new network for a particular site, a new system
for company x, and technology has changed markedly since
the last time.

• There are similarities of course, and this may well have a
bearing on the kinds of estimation that we can use in the wider
context.

• In addition, we are plagued by change and uncertainty.

• Lots of other things we might also wish to ‘predict’, e.g.,
errors, intrusions etc.

SSRC: Software Systems Research Centre Software Project Management

Change and uncertainty

• Change and uncertainty typify the environment for Computing
projects.

• Operating environment, other software, networks, business
models.

• The old (or new) legacy systems problem …
• Deadline, budget constraints, priorities.
• Staffing. Also access to client’s staff.
• Technology (again often changing even during the project…,

or may even be working towards other new technologies).
• Functional (or other) requirements change (during the project

and when delivered: Features, Reliability, Performance,
Usability…
• and if we have to write software this is intrinsically difficult to predict.

SSRC: Software Systems Research Centre Software Project Management

Software is Description

• An inherent problem with our domain (industry)
• With hardware engineering (cars, aeroplanes, computers

etc.) you have to design it and then build it. But . .
• “To build software is to build a machine simply by

describing it”
(Michael Jackson (the software requirements one), 1995)

• You can’t see it, you can’t touch it and you can’t weigh it.
• Its the holes.. (Richard Feynman). It’s “think-ware”.

• Inappropriateness of manufacturing paradigm.
• All of our building is actually like building the prototype in

manufacturing; the replication (manufacturing is trivial).

SSRC: Software Systems Research Centre Software Project Management

Estimation Difficulties

• If that’s not enough, estimation brings its own issues.
• lack of data, and what exists may be unsystematic
• “noise”
• phenomena not well understood
• interactions among variables are often complex
• lack of expertise
• past experience is used inconsistently if used at all [though we may

seek to change that].
• hard to [incorporate] all the human factors influencing cost, e.g..

political problem, people factors.
• Tom DeMarco, T., (1982) Controlling Software Projects. Management,

Measurement & Estimation. Yourdon Press, NY, 1982

SSRC: Software Systems Research Centre Software Project Management

So how do we estimate?

• Expert Judgement.
• Bottom up (activity based) approaches (or top down).
• Statistical methods (e.g., regression models).
• Parametric (algorithmic), e.g., Function Points, COCOMO
• Analogy. Use data from similar, past projects (often with

the help of other approaches).
• Natural computing approaches, e.g., neural networks, rule

based, data mining, CBR, genetic algorithms, PSO,
hybrids.

• Hybrid approaches (of the above).
• Price to win
• Other approach (consulting the stars?)

SSRC: Software Systems Research Centre Software Project Management

Your experience of
estimation

• Expert Judgement
• Bottom up
• Top Down
• Statistical methods
• Function Point
• COCOMO
• Other Parametric
• Analogy
• ANNs

• ANNs (neural nets)
• Rule based (expert

systems)
• CBR
• GAs
• Hybrid approaches (of

the above).
• Price to win
• Other DIY approach

SSRC: Software Systems Research Centre Software Project Management

Expert Judgement

• For whole system or part of system.
• May involve several experts, drawing on their

experiences.
• Could ask an outside consultant.

• [Any disadvantages?]
• Reach a consensus (if possible).

• Delphi Poll is one method.
• We will examine Delphi in further detail later.

SSRC: Software Systems Research Centre Software Project Management

Bottom up

• Bottom-up. Estimate effort for system components
and/or activities, combine for overall project estimate.

• Strengths
• Could involve allocated engineers; those responsible for

development of each unit assess the costs.
• Allows for differences between system components
• Can be used for cost tracking and useful when no past

project data to go on.
• Weaknesses

• Could overlook project activities such as integration or
configuration management

• Requires detailed requirements or spec, so not always
possible early on in life cycle, plus time consuming.

SSRC: Software Systems Research Centre Software Project Management

Top down

• Derive effort estimate for project as a
whole (often using effort drivers).

• Distribute estimate to components or
project activities.

• Advantages
• Requires minimal project detail
• Relatively fast and easy to implement
• Focus on system level activities

• Disadvantages
• Tend to overlook low level components
• No detailed basis

design code

overall
project

test

Estimate
100 days

30%
i.e.
30
days

30%
i.e.
30 days

40%
i.e. 40 days

SSRC: Software Systems Research Centre Software Project Management

Statistical Approaches

• Traditionally estimation assumed probabilistic distributions.
• A typical (common) statistical approach is linear regression.
• A simple version finds a line of fit (can be multi-dimensional)

and uses this to predict further point estimates.
• Other approaches, e.g., PCA can be used to find which variables appear

to have most impact on the estimate.
• Often used as a baseline for comparison with other (more

advanced) approaches.
• Interestingly while computing uses many approaches to

prediction other disciplines can still be very reliant on the
statistical approach to prediction (or estimation).

SSRC: Software Systems Research Centre Software Project Management

Parametric Models

• Mathematical equations to perform software
estimation (using parameters).

• Equations are based on theory or historical data.
• Use inputs (cost drivers) such as source LOC.
• Accuracy can be improved by calibrating the model to

the specific environment.
• COCOMO (lines of code) and function points most

well known examples.
• Though many adaptations, e.g., use case points.

SSRC: Software Systems Research Centre Software Project Management

Parametric Approach

• Using formulae derived from past projects.
• Inputs are project characteristics, quantified.
• Outputs are estimated project cost/time.
• Key benefit is repeatability.
• Requires a calibrated model based on a large set of

good quality data from past projects in this
organisation. [Why?]

• Not good for a new type of project. [Why?]

SSRC: Software Systems Research Centre Software Project Management

Building parametric models

• Examples of system characteristics
• no of screens x 4 hours
• no of reports x 2 days
• no of entity types x 2 days

• The quantitative relationship between the input
and output products of a process can be used as
the basis of a parametric model.

• Models vary in their sophistication.

SSRC: Software Systems Research Centre Software Project Management

Simplified Parametric Model

• Use some historical data
• A simplistic model for an estimate

• estimated effort = (system size) / productivity, e.g.,
system size = lines of code
productivity = lines of code per day
productivity = (system size) / effort
based on past projects

SSRC: Software Systems Research Centre Software Project Management

Focus of models - Size

• Some models focus on task or system size e.g.,
Function Points, Bang model.

• FPs originally used to estimate Lines of Code, rather
than effort.

Parametric
model

Number
of file types

Numbers of input
and output transaction types

‘system
size’

SSRC: Software Systems Research Centre Software Project Management

Effort and productivity

• Other models focus on productivity or effort as
outputs, e.g., COCOMO

• Lines of code (or latterly FPs etc) an input.

model

System
size

Productivity
factors

Estimated effort

SSRC: Software Systems Research Centre Software Project Management

Parametric Models:
Evaluation

Advantages
• Generally easy to use, tools and support
• Repeatable
• Helps us to understand the factors (cost drivers) that have an impact

on cost (effort) and time (schedule).
Disadvantages
• Calibration and validation is an issue
• Historical data not necessarily relevant to new projects
• Can be misleading.
• Some suggestions that models can be used (tweaked) to come up

with the answer that the manager wants in terms of resources.
• Inputs are often unknowns themselves. .. “if I knew the lines of code

I’d know how big it was”.

SSRC: Software Systems Research Centre Software Project Management

COCOMO II

• Inputs
• Estimated system size (lines of code) - from expert

judgement (or Function Points?).
• Project characteristics: examples - system complexity,

engineers’ experience, quality of tools used
• Allows for code reuse and adaptation.
• Published formulae calibrated from 161 projects.
Reference: Boehm B.W. et al. (2000) Software Cost Estimation

with COCOMO II, Prentice Hall.
See Boehm (1981) for the original COCOMO model.

SSRC: Software Systems Research Centre Software Project Management

Function Points

• Size of system based on analysis of requirements,
specifically:
• Number of inputs and outputs.
• Number of user transactions.
• Number of stored entities accessed.

• Effort estimates adjusted using project characteristics.
• Good results for certain application domains.
See for example Hughes & Cotterell (2002) pp90-93.

SSRC: Software Systems Research Centre Software Project Management

Analogy

• Often uses “Case-based reasoning” approach, and
some use terms synonymously.

• Use data from past projects - cost/time/effort.
• Find “similar” projects. What does this mean?

• Criteria? How do we measure similarity?
• May have to scale up/down.
• May have to adjust for changed circumstances.
• Relies on good quality information being retained for

past projects. (What would this be?)

SSRC: Software Systems Research Centre Software Project Management

The most similar project (s)

• Let’s suppose I have (unusually) kept records of past
projects.

• A similar project might be a good start for estimating
my new project.

• Which is the most similar?
• How would I determine this?
• Typically have a number of categories (often numeric

or categorical).
• A simple measure would make no assumptions (or

weighting of these variables).

SSRC: Software Systems Research Centre Software Project Management

Angel tool (BU)

• Shell
• n features (continuous or categorical)
• Brute force search for optimal subset of features —
• O((2**n) -1)
• Measures Euclidean distance (standardised

dimensions)
• Uses k nearest cases.
• Simple adaptation strategy (weighted mean).
• With k=1 becomes a NN technique

SSRC: Software Systems Research Centre Software Project Management

Analogy Evaluation

Advantages
• Based on actual project data
• Studies show it out performs algorithmic (parametric)
• methods
• Even better when used with expert judgement
Disadvantages
• Impossible if no comparable project had been tackled
• in the past.
• How well does the previous project represent this one?

SSRC: Software Systems Research Centre Software Project Management

Further approaches

• To some extent mirrors developments in natural computing
(AI), with expert systems (rules), logic approaches, nets,
CBR, and latterly GAs, PSO and various hybrids.

• These approaches can be used for many prediction and
estimation problems, as well as for computing projects.

• Strong history within BU and latterly Software Systems of
examination of these approaches, from traditional routes in
cost estimation and software metrics, through empirical
evaluation of approaches, CBR and analogy (Angel tool) to
further uses of AI approaches to prediction and estimation.

SSRC: Software Systems Research Centre Software Project Management

Some BU work on prediction

• E.g., well cited early paper:
• Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shepperd, M.

and Webster, S. (2000), An Investigation of Machine Learning Based
Prediction Systems, Journal of Systems and Software

• A number of PhDs in such areas, e.g.,
• PhD: Premraj, R., Meta-Data to Enhance Case-Based Prediction:

completed April 2006
• PhD: Banks, A., A Naturally Inspired Guidance System for Unmanned

Autonomous Vehicles Employed in a Search Role: completed Oct
2009. Early work by the team gained best paper award.

• Current work in SSRC to use natural computing approaches for
network based intrusion detection.

• Previous EC funded project had used approaches to detect
fraud in mobile (phone) networks.

SSRC: Software Systems Research Centre Software Project Management

Natural Search Strategies for
Un-manned Autonomous
Vehicles

1
2

3

4

Key

Velocity Vector
LSZ Neighbourhood
UAV RADAR Range

Hostile Aircraft

Interceptor UAV

SSRC: Software Systems Research Centre Software Project Management

Machine Learning for Network
Based Intrusion Detection

• Intrusion detection in this context refers to detecting malicious behaviour in
computer systems or computer networks.

• Magnitude of data is generally so immense that it becomes an impossible task for a
human; the amount of data will grow quicker than it can be analysed.

• One of the main goals of IDSs is automating the detection process.
• Found many results from previous research were contradictory, finding that the

performance of the techniques varies significantly in different circumstances, as use
of the data set is altered.

• Empirical investigation reveals what impact various issues with the data set has on
the performance of the techniques, explores ways of dealing with these issues, and
discusses implications.

• Class imbalance has been found to be a significant challenge to most of the machine
learning classifiers adopted in the literature.

• One part of this research focused on demonstrating that this is indeed an issue for
intrusion detection, affecting the performance of the classifiers.

• Further from this, a novel approach to learning from imbalanced data has been
proposed, using multi-objective genetic algorithms to evolve artificial neural
networks and classifier ensembles.

SSRC: Software Systems Research Centre Software Project Management

Stages in Delphi

1. Experts receive spec + estimation form
2. Discussion of product + estimation issues
3. Experts produce individual estimate
4. Estimates tabulated and returned to experts
5. Only expert's personal estimate identified
6. Experts meet to discuss results
7. Estimates are revised
8. Cycle continues until an acceptable degree of
convergence is obtained.
• Can also use a fixed number of rounds, or other means to agree acceptable

convergence.
• For computing projects, there are typically a number of components

estimated, e.g.,, from WBS, but the idea can be used for a variety of
applications (domains).

• Used Delphi on Masters Integrating Studies (see separate slides).

SSRC: Software Systems Research Centre Software Project Management

Summary

• Why we need to estimate.
• Difficulties and issues within estimation
• A variety of techniques from expert ‘opinion’, through

statistical and parametric approaches, to analogy and natural
computing approaches.

• CBR and analogy plus natural approaches appear more generic
(if suitable data) and can be applied to wide range of
estimation and prediction problems.

• Also found to perform well against traditional approaches.
• However, cannot under-estimate the human element (at least as

a sanity check).
• Collective approaches also bring further power (e.g., Delphi).

SSRC: Software Systems Research Centre Software Project Management

An exercise

• We are to use Delphi to attempt to produce an
estimate.

• We will use teams and rounds.

• Extras follow on estimating process ->

SSRC: Software Systems Research Centre Software Project Management

Who estimates?

• Project manager, developer, or specialist
• Can use experience of past projects
• Usually experienced

• Consultant
• Can provide unbiased estimate
• Tend to use empirical, algorithmic or other “non-expert”

methods of estimation
• Unlikely that a model will outperform an expert

• So why are models so popular?
• Possible lack of historical data to calibrate the model

• Your experience, who estimated project cost?

SSRC: Software Systems Research Centre Software Project Management

Further issues

• A study of 598 (mostly development projects) found
that:
• 35% do not make an estimate
• 50% do not record project data
• 57% do not use cost accounting
• 80% projects have overrun budget and/or timescale
• Mean budget / timescale overrun is 50%

• Heemstra, FJ “Software Cost Estimation” IST 34 (10) 1992
p627-39

• Some improvements, though again recording tends to be poor
despite the prevalence of ISO, TickIT, CMM, ITIL, etc.

SSRC: Software Systems Research Centre Software Project Management

When to Estimate

• This might seem obvious to you, but people see this
as a one shot deal.

• Cost estimation should continue throughout the
project (to refine or update estimates)

• Effective monitoring and control of project costs is
necessary to verify and improve accuracy of estimates

• When to measure is as important as what to measure
(and people need to understand this in terms of their
process, even augmenting their process models).

SSRC: Software Systems Research Centre Software Project Management

Planning for Estimation

• Establish Plan
• What data should be collected
• Why are we gathering this data (our goals)

• Cost estimation for initial requirements
• Use several methods, if time and resources allow

• Spread the risk
• If wide variation in methods, then re-evaluate the

information used
• Re-estimates, re-plan
• Final assessment of cost estimation at project close

	Estimation and Prediction in Computing�
	Questions and Overview
	Cost Estimation
	Why we need to estimate
	What we need to estimate
	Diseconomies of scale
	Estimation in Computing
	Change and uncertainty
	Software is Description
	Estimation Difficulties
	So how do we estimate?
	Your experience of estimation
	Expert Judgement
	Bottom up
	Top down
	Statistical Approaches
	Parametric Models
	Parametric Approach
	Building parametric models
	Simplified Parametric Model
	Focus of models - Size
	Effort and productivity
	Parametric Models: Evaluation
	COCOMO II
	Function Points
	Analogy
	The most similar project (s)
	Angel tool (BU)
	Analogy Evaluation
	Further approaches
	Some BU work on prediction
	Natural Search Strategies for Un-manned Autonomous Vehicles
	Machine Learning for Network Based Intrusion Detection
	Stages in Delphi
	Summary
	An exercise
	Who estimates?
	Further issues
	When to Estimate
	Planning for Estimation

