
Information and Software Technology 40 (1998) 12% 133

INFORMATION
AND

SOFTWARE
TECHNOLOGY

RolEnact: role-based enactable models of business processes

Keith Thomas Phalp aS*, Peter Hendersonb, Robert John Walters b, Geetha Abeysinghe”

“Empirical Sof?wnre Engineering Research Group, Deportment of Computing, Boumemouth University, Tulbot Campus. Fern Barrow. Poole,

Dorset BH12 5BB, UK

hDeclarative Systems and Software Engineering, Department of Electronics and Computer Science, University of Southampton, Highjeld,

Southampton SO1 7 IBJ, UK

‘School of Computer Science, Middlesex University, The Burroughs, London NW4 4BT. UK

Received 19 February 1997; received in revised form 27 February 1998; accepted 2 March 1998

Abstract

This paper describes RolEnact: a process-modelling notation used to provide enactable models of process instances. The paper shows how
RolEnact models may be produced which are equivalent to role activity diagrams (RADs). This allows the modeller to describe processes in a
notation (RADs); which can be understood both by process consultants and process users, whilst retaining the ability to generate enactable
process scenarios. 0 1998 Elsevier Science B.V.

Keywords: Business process modelling; Role-based models; Role activity diagram; Enaction; Condition-action models

1. Introduction

The focus of this paper is the use of notations and tools to
improve business processes. However, in describing
approaches to business process modelling it is difficult to
ignore the impact which software process modelling and the
study of software process has had upon the discipline [l].
Many of the notations and tools used for business process
modelling were originally developed for study of the
software process [2]. The drive towards automation of the
software process and towards project support environments
has produced much software process technology. This
process technology shares many features with modelling
technology in other business domains [3-51.

This paper takes its rationale from another area of soft-
ware process modelling, process programming [6]. Process
programming argues that the software development process
may be regarded as a set of activities, with associated inputs
and outputs, that can be described in the same way that a
software program describes the data and control to be cap-
tured in the tinal system [7]. Taken literally, a consequence
of this view is that process models should use modelling
languages like programming languages [8,9], and should
attempt to codify and control human behaviour. Hence,
some authors have argued vehemently against process
programming [lo], arguing that systems which involve

* Correponding author.

0950-5849/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved

PII SO950-5849(98)00047-O

human behaviour cannot be codified or controlled so rigidly

[lll.
However, one of the intentions of the adoption of the

phrase process programming was to provide an analogy
about the way a software process should be developed
[121. The argument being that a development process should
have a process life cycle [13]. Osterweil [6] states that ‘the
various software processes should be viewed as having been
created by process development processes’. This suggests
that there needs to be a life cycle for developing processes,
which includes phases for process requirements, process
design, process construction, process testing, process evolu-
tion and process re-use [121.

These ideas may also be applied to the wider business
process domain. Hence, business process models should
have a requirements capture phase, a design phase, a debug-
ging phase and so on. However, in applying such ideas to
business processes the paper again draws on another idea
from the software domain, that of executable specifications

[141.

1.1. Executable specijcations of bmhess processes

Proponents of executable specifications argue that one of
the main advantages of this technique is that it allows spe-
cification errors to be spotted far earlier. Since the cost of
fixing problems late in the development process may be as
much as 100 times greater than if they had been detected

124 K. T. Phalp et alAnformation and Software Technology 40 (1998) 123-133

early, e.g. in specification [15], the early discovery of such
problems would appear to be beneficial. However, despite
such economic arguments there is still much debate about
the utility of executable specifications [161.

This paper proposes that, as with the software develop-
ment process, the early detection of specification errors will
be equally cost-effective when the object being specified is a
business process. Furthermore, it is suggested that the vali-
dation of business processes at the specification and analysis
phase may be aided by the use of executable (enactable)
models. Hence, this paper describes RolEnact, a notation
for producing executable specifications of business pro-
cesses. The paper also describes how this language may
be combined with Role Activity Diagrams (RADs) [17],
which are used for the initial gathering of process require-
ments.

Briefly, the method utilised is as follows: requirements
capture and validation is facilitated by the use of RADs.
These diagrams are translated to RolEnact code and RolE-
nact models are then run on a computer. These models have
a simple Windows interface which allows modellers (or
users) to experiment with the process behaviour (to run
the executable specification of the business process).
Hence, the model of the business process may be debugged
before its implementation, and process specification errors
captured far earlier.

2. Notations

Process modelling is an area that has seen a great deal of
work over the last decade or more. A great many paradigms
have been proposed to model processes in a variety of
domains [181, and there exist many tools and notations for
those wishing to attempt to model their business processes

1191.
Curtis [20] classifies process modelling approaches as

taking one of four perspectives; informational, organisa-
tional, procedural and behavioural. Of these approaches,
the latter two, procedural and behavioural, account for the
majority of process modelling currently being undertaken.
Information approaches are too static, failing to capture the
process or its dynamics, and organisational views are in
many ways the antithesis of the process modelling move-
ment, restricting the most efficient use of resources.

The following section argues that of these two remaining
approaches, role-based models are more appropriate to the
needs of many business process modellers.

2.1. An argument for role-based models

Procedural views of a process typically involve the pro-
duction of data flow based models, based on notations such
as Yourdon (see Ref. [21], used by Tate [22]), IDEFO (see
Ref. [23]) or ProcessWise WorkBench (see Ref. [24]).
These methods describe processes in terms of activities

and the data or objects communicated between activities.
Though using tried and tested techniques, it is very difficult
with such models to abstract away from the details of pro-
cess, and to capture the interactions between the people who
carry out core activities’.

When attempting to redesign or improve a process, the
modeller should not be concerned with the mechanism of
how this process proceeds. What is needed is a model that
describes those activities that support the business goal. The
activity of receiving and passing on information may really
be superfluous to the process, or it may be core, but the
mechanism by which this happens is irrelevant. It is argued
[19,251 that when modelling at this level of detail it is harder
to move away from the current mechanism of the process in
attempting to redesign, and easier to assume that these
mechanisms are actually essential aspects of the process.
Furthermore, the necessity for activities to communicate
via business objects introduces many artificial objects into
the process description. Indeed, the depiction of the business
process should not prescribe mechanisms since it is then
more likely to inhibit change. Consider a manager commu-
nicating some project detail to a team member. From the
business perspective it is important is that an interaction
takes place and that further activities may then proceed.
The business goal must be represented, not the mechanism
that currently supports it.

A second problem with procedural models is that the
activities that are to be carried out by individuals are often
spread around the model, since the models tend to have
decomposition related to function. For an individual (or
group) in the organisation to carry out their activities, they
need to know what activities they must take part in, in what
order those activities must take place, and what other indi-
viduals or groups they must interact with [26].

Role-based models satisfy these requirements by group-
ing activities into ‘roles’, which describe the desired beha-
viour of individual groups, or systems [25]. ‘A role involves
a set of activities which, taken together, carry out a parti-
cular responsibility or set of responsibilities’ [27]. Roles are
like types or classes in that they describe behaviour that is
then carried out by some actor (person) or agent. Customer
behaviour may be described by a customer role, but a parti-
cular customer is an instance of that role.

2.2. Role activity diagrams

The example in this paper is described using a RAD. This
diagram (Fig. 1) describes the example process. The reader
may find it useful to refer to Fig. 1 whilst reading the

’ For example, a particular person or group of people may be responsible
for a number of activities within the process. A typical procedural approach
would show how a particular activity may receive documents, take some
action, and then pass them on to a further activity. There are two kinds of
problem with this approach. Firstly, that it focuses on the mechanism of the
current process and, secondly, that it does not describe the process with
respect to those who will have to enact it.

K. T. Phalp et al./Information and Software Technology 40 (1998) 123-133 125

following section which briefly describes RAD concepts
and notation.

2.2.1. Roles
Roles group together activities that can be carried out by a

group, an individual or a system (i.e. some actor or agent).
The grouping of activities into a role reflects the fact that it
represents some unit of responsibility. Roles are depicted as
rounded rectangles surrounding activities.

Roles have a thread of control depicted by a vertical state
line. The thread of control for the role allows for the descrip-
tion of sequential activities, parallel activities, and choice.
Roles are types, e.g. they describe the behaviour of a class of
individuals. Hence, there may be many instances of a par-
ticular role when the process is enacted; for example, there
may be many customers. In addition, a single person may
act out multiple roles; for example, a cashier may also act as
a supervisor. A role is independent of other roles, but com-
municates through interactions. Instances of roles therefore
act in parallel, with the interaction between roles being their
only synchronisation mechanism.

2.2.2. State
A role has state. In carrying out an activity, it moves from

Client .

obtain form [

holding form (

complete form 1

form completed (

ubmit application E

awaiting decision (

T
final 0

initial

state to state. However, the notation does not require the
modeller to explicitly label the state of a role, though
some authors prefer to do so [19,28]. Therefore, the state
may be viewed as a point on the vertical line that depicts the
thread of control of the role. Consider the activity ‘complete
application’ in the ‘Client’ role of the example. In carrying
out the activity, the role moves from a state of ‘having
received’ the form to being ‘ready to submit’ the form.
The line vertically above the activity represents its current
state, and the line below its new state. By labelling states the
semantics of the role become clearer, and the labels help to
make explicit the pre-conditions and consequences of each
activity. However, the diagram becomes larger and this
sometimes hampers understanding.

2.2.3. Activities
There are two types of activity in a role. An action is an

activity that the role carries out in isolation. Carrying out an
action moves the role from its present state to the next state.
An action is represented by a small square. In this paper,
actions are represented as solid black squares. An interac-
tion is an activity that is carried out in sequence with another
activity (or other activities) in another role (or roles). The
consequence of an interaction is that all of the roles involved

Council Clerk
\

?

initial

?

form issued

5 application received

/ F guidelip

refer , ,

decide awaiting

i

decision

decision ready

4’ ,I give decision

0 initial

‘lanning Commitee

initial

e await meeting

decide at meeting

decision taken

,, publish minutes

0 initial

Fig. 1. Role activity diagram for an example.

126 K. T. Phalp et alAnformation and Sofhwre Technology 40 (1998) 123-133

move to their next state. Interactions are shown as small
clear squares joined with horizontal lines. An interaction
is always driven by some role, and in this paper this is
signified by the square of that interaction being hatched or

shaded.

2.2.4. Control
The thread of control in a role need not proceed sequen-

tially. RADs have constructs to represent alternate paths
(choice) and concurrent paths (parallel).

Choice is termed ‘case refinement’ [27,29], and is shown
by the state line being split into two paths, the top of each
path being marked with a downward pointing triangle (or in
some tools, e.g. RADitor [29], a circle). There may be any
number of alternative threads but only one of the threads (or
cases) may be chosen.

Concurrent threads are termed ‘part refinement’ [27,29],
each thread representing part of the path. The threads all join
again after the split denoting that all paths have been com-
pleted. The points where the path divides are marked with
an upward pointing triangle.

2.2.5. Iteration

Drawing a loop back to a previous point on the role nor-
mally shows iteration in roles. This signifies that the named
state may be revisited. Typically, this looping is used when
there is some checking or control mechanism within the
business process.

2.3. RolEnact

RolEnact is a language for process modelling. It is based
upon a condition-action paradigm. However, its primitives
match those of role-based models (as described above).
Thus, processes are described in terms of roles, the states
of these roles, and the activities or events in which each role
may take part. An instance of a role has state, and may move
to its next state through an activity. This activity may be in
isolation (an action) or may involve changing the state of
another role or roles (an interaction or a selection).

However, it is not the fact that RolEnact brings together
condition-action and role-based paradigms which is its
main advantage, rather it is the fact that RolEnact models
may be executed on a computer providing a simple Win-
dows-based interface which users may use to experiment
with processes. These enactable models are used by two
main classes of users.

Modellers, who produce and experiment with the mod-
els in order to understand the process description, to
discover problems, and to analyse alternatives.
Representatives of the client organisation, who interact
with the models by taking the parts of users. These ses-
sions can be used to validate the models, to experiment
with process scenarios, and to provide a vehicle for pro-
cess discussion.

3. Example problem and RADs

The example used in this paper describes the interactions
between three roles: a member of the public wishing to
make a planning application (the Client), a Council Clerk
and the Council Planning Committee. This is a simplified
version of processes encountered by the authors in model-
ling local government organisations, both in Europe and the
UK [30].

3.1. An example as a role activity diagram

Fig. 1 shows the three roles ‘Client’, ‘Council Clerk’, and
‘Planning Committee’. Starting at the top of the member of
the public, the ‘Client’ role there is an external event (shown
as a horizontal arrow) which signifies the ‘Client’ deciding
that planning approval is needed. The ‘Client’ obtains an
application form from the Council offices and takes it away
for completion. Once the form has been completed, the
‘Client’ returns it to the clerk at the Council Offices. The
clerk examines the form to see if it can be approved
without consulting the planning committee. If the applica-
tion meets these criteria, the clerk can answer the applica-
tion immediately. Otherwise, it is referred to the committee
for a decision. When the clerk receives the response
from the committee, that decision is passed back to the
‘Client’.

4. Moving towards enaction

RADs describe types, and thus they do not describe the
synchronisation of instances of the roles. In order to move
towards being able to run process simulations, some
assumptions need to be made about the states of instances
of roles. For example, this paper will assume that all roles
start in an initial state and that, whilst the ‘Client’ role ends
after a decision is received for an application, the ‘Clerk’
and ‘Committee’ roles return to the initial state ready to
process another application. A working model of this exam-
ple will also use an additional, fictitious role that will create
the other roles.

RolEnact does not have explicit support for parallel
threads within roles, but all roles act in parallel so that
parallel threads within a role may be represented by separate
roles. A new role (or roles) is created at the start of the
parallel threaded section of the role to carry out each of
the additional paths. These parallel paths rejoin by the use
of an interaction. A consequence of this is that when Rol-
Enact models are created from RADs they may have a
greater number of roles. The advantage of this representa-
tion scheme (aside from providing a consistent mapping) is
that it further decomposes the process such that for any
instance of the previously parallel role, the parallel threads
could now be assigned to different actors. However, a dis-
advantage is that the role with parallel threads may often be

K. T. Phalp er al./lnformation and Software Technology 40 (1998) 123-133 127

a more representative depiction of the business process
being modelled.

To aid comprehension, the features of the RolEnact lan-
guage have been deliberately kept to a minimum. In some
circumstances, this may mean that some ingenuity from the
modeller is required to accurately describe the process under
consideration. For example, although it is possible to create
multiple instances of any role, a single role cannot simulta-
neously interact with multiple instances of another type. In
this case, however, each instance would exhibit the same
behaviour, moving from the same before state, to the same
after state. Aside from the redundancy of such a description,
this is not an intuitive way to think about business processes.

Hence, where a group of individuals act in this way, they
are modelled as a single role. Consider the role Planning
Committee role in the example process. Although formed of
individuals the Committee act as one, and there is no
requirement to understand their internal operation. The
members of this Committee are best considered as a team
acting in concert, i.e. as a single role. Each instance of this
role is acted out by a number of staff (resource units), but
these are not individual roles. Therefore, the mode1 has a
single role for the ‘Committee’ in place of multiple roles of
a type ‘Committee_Member’.

5. RolEnact description

All RolEnact models can be made up of four basic types
of behaviour: action, interaction, selection, and creation.
These behaviours allow instances of roles to move from
existing states into new states, to communicate with each
other, to choose and then interact with other role instances,
and to create new role instances.

The RolEnact behaviours correspond to those of standard
RADs. RolEnact actions correspond to RAD actions, and
move instances of roles from an existing state to their next
state. RolEnact interactions also correspond to RAD
interactions, in that they move all roles involved through
from their existing states to their next states. RolEnact
selections also correspond to RAD interactions. Selec-
tions are necessary in order for instances of roles to com-
municate consistently. Selections are interactions

between roles that have not previously communicated.
The distinction is that in order to ensure that the correct

before

t ’ action

after

Fig. 2. A RolEnact action as a RAD

instances communicate, selection sets up an identifier, so

that each role instance can identify the other. Creation is
another standard RAD construct and is reflected in RolE-
nact’s creation operation. This operation allows roles to
create other role- instances and to set up identifiers for
future communication.

These four building blocks enable the modeller to build
up the behaviour of standard RADs, but with the added
advantage that the resulting model may be enacted on a
computer.

5.1. Action

An action is as a process step that changes the state of the
system. An action changes the state of its own role, from

some before state to some after state (see Fig. 2).
The before state is a precondition for the action. That is, the

action cannot take place if the role is not in the before state.
As a result of the action, the role will be in the after state. The
RolEnact syntax is shown below (keywords in bold):

ActionRole.Action

Mefbefore-after)

End

The Action keyword denotes that an action is to be
described. The action name is prefixed with the name of
the role that contains it, and then the name of the action
itself follows the dot operator. The keyword Me refers to the
current role instance which is invoking the action.

As an example, take the ‘complete form’ action of the
‘Client’ role. This is described as:

ActionClient.complete_form

Me(holding_form-+ form-completed)

End

5.2. Interaction

An interaction is a process step that takes place simulta-
neously in more than one role. As with RADs, the interac-
tion has a driving role (which initiates the interaction), and
all roles involved in the interaction move from their before

Role1 Role2
\ , / \

before2

after2

Fig. 3. A RolEnact interaction as a RAD.

128 K. T. Phalp et al./lnformation and Software Technology 40 (I 998) 123-133

state to their after state (see Fig. 3). For the interaction to
take place, the driving role must have an associated role.
This association will have been made in a previous selection
or creation.

More formally, when the driving role (Rolel) is in the state
before1 and its associated role (Role2) is in the state before2,
the interaction may take place. The diagram above shows how
this is depicted graphically (as a I&AD). The interaction is
named at the driving role end, which is depicted by having a
shaded activity square. As a result of the interaction, the driv-
ing role will move to the state ufterl, and the associated role
will move to the state ufter2. In RolEnact this is represented as:

InteractionRolel.Interaction

Me(beforel-afterl)

Role2(before2 -+after2)

End

The change of state for the roles is described as it would
be for an action, i.e. before - after. Hence, in the above Rol-
Enact description, the Me refers to the driving role, which
changes state from before1 to after-l, and the Role2 to the
associated role, which changes state from before2 to after2.

As an example consider the situation when a ‘Client’ has
completed the form (and so is in the state ‘form completed’).
The ‘Client’ may interact with a (previously associated)
‘Clerk’, only when the clerk is in the correct state (in this
case ‘form issued’).

InteractionClient.submit_application

Me(form_completed--r

awaiting-decision)

Clerk(form_issued+ form-received)

End

5.3. Selection

For an interaction to occur, the driving role must already
have some associated role. Selection is one of the
mechanisms by which association is made.

If one of the roles has created the other then there will
already be an association from this creation, and the roles
may simply communicate via an interaction. However,
often a role needs to interact with another where there is

Role1 Role2

f \ f

before1

interac ion ,

j ,-:

before2

after1 after2

Fig. 4. A RolEnact selection as a RAD.

no existing association. In this case, the first interaction
must be a selection.

In selection, the driving role selects another role, creates
an association with that role and then behaves as in an
interaction.

More formally when the driving role is in the state
before1 and there exists a role instance of type Role2 in
the state before2, then the driving role performs the selec-
tion and moves to the state after1 (see Fig. 4). The newly
associated role is moved to the state of ufter2, and Role1
creates an association with Role2 and vice-versa.

The RolEnact for a selection is:

SelectionRolel.Selection

Me (beforel-afterl)

Role2(before2 -after2)

End

Note that this appears to be the same as an interaction, and
indeed a RAD would make no distinction between a selec-
tion and an interaction. However, the Role2, in the above
RolEnact description is a role type and not an instance. The
selection states that a role instance of type Role2 will be
chosen. Role1 will be associated with the chosen instance
of type Role2, and then an interaction will take place.
Although hidden from the user or modeller, RolEnact is
generating the following association:

Me.Role2: =r r.Rolel: =Me

That is, the driving role identifies the chosen role r, as the
role of type Role2 to which it is associated, and the chosen
role r associates the driving role as the Role of type Role1
with which it is associated.

As an example, suppose that a Client wishes to obtain an
application form from a Clerk. In this case, there would be
no existing association. The RolEnact would be:

SelectionClient.obtain_form

Me(initial-holding-form)

Clerk(initial- form-issued)

End

Note that this code appears to be identical to that for an
interaction. However, the ‘Clerk’ Role referred to above is
not an (associated) instance of a role. Enact is told to choose

before1

after1

/

Fig. 5. A RolEnact creation as a RAD

K. T. Phalp et al./lnformation and Sofmare Technology 40 (1998) 123-133 129

a role of the type ‘Clerk’ and to create an association. The

association is invisible to the modeller, for whom interac-
tion and selection may be treated as if they were the same.
However, an association will be set up as follows.

Me.Clerk: =r r.Client: =Me

That is, the driving role, Client, identifies the chosen role r,
as the role of type Clerk to which it is associated. Similarly,
the chosen role r (the Clerk) associates the driving role as
the Role of type Client to which it is associated.

5.4. Creation

Creation is where a role creates a new instance of a role,
and creates an association with that role. The creating role
has the simple state change of all of the RolEnact constructs
moving from its before state to its after state. The new role
(new Role2), is declared, and will be created with the default
state initial.

More formally when the role is in the state beforel, it
performs the creation and moves to the state ufterl, creat-
ing a new instance of type Role2 (see Fig. 5). In RolEnact,
this is written.

CreateRolel.Create

Me (beforel-afterl)
newRole

End

Again RolEnact will set up an association, just as for
selection, and again this association is handled by the imple-
mentation of RolEnact, and hidden from the user.

Me.Role2: =r r.Rolel: =Me

Creation is shown as an action with a double arrowhead
pointing at the created role. To enact the example, an addi-
tional role is needed. The extra role is not shown on the
RAD, it used only by the RolEnact simulation, and it is
not part of the business process being modelled. This role
will be called Control. An example of creation is:

CreateControl.newClient

Mecinitial- initial)

newclient

End

The hidden association set up by Enact would be:

Me.Client: =r r.Control: =Me

For the simple example described above, this association
is not used, since the Control has no further interaction with
any of the roles it creates. However, in principle, any role
may create an instance of a role of another type and
then communicate with that created role. For example, a
superior will often create (instantiate) a subordinate role,
and then interact with the subordinate on a number of
occasions; giving initial instructions, checking on progress,
being reported to and so on. Indeed, this is a scenario

that the authors have witnessed across many domains,

and one that is naturally modelled using the creation
construct.

6. The example in RolEnact

The RolEnact description of the example is now
described in full. The RolEnact code mirrors the behaviour
that one would expect when running instances of the exam-
ple RAD.

6. I. Control

Control is an additional role and does not appear on the
RAD of the example process (see Section 5.4). Its purpose is
to create instances of the other roles in the model. In
creating new instances of the ‘Client’ role, it simulates the
external event that starts the process.

The Control role has three alternate paths, each consisting
of a single ‘create’ activity and each returning the role to its
initial state.

Create.newClient

Me(initial- initial)

newclient

End

Create.newClerk

Me(initial--rinitial)

newclerk

End

Create.newCommittee

Me(initial- initial)

newcommittee

End

The following descriptions, of Client, Clerk and Com-
mittee, will assume that role instances have been created
(by Control), such that actions, interactions and selections
may take place. However, no existing associations are
assumed. Hence, the following role descriptions (Section
6.2~Section 6.4) model the behaviour as described by the
RAD of Fig. 1.

6.2. Client

A ‘Client’ may select any ‘Clerk’ that is in an ‘initial’
state (see Section 5.3). The selection ‘obtain form’ moves
the Client from an ‘initial’ state to the state ‘holding form’,
and the ‘Clerk’ from initial to ‘form issued’.

SelectionClient.obtain_form

Mecinitial-holding-form)

Clerkcinitial- form-issued)

End

130 K. T. Phalp et al./Information and Software Technology 40 (I 998) 123- 133

The ‘Client’ role instance then carries out the action SelectionClerk.refer

‘complete form’ alone and consequently moves to the Me(application_received -

state ‘form completed’. awaiting-decision)

Committee(initial-

meeting-needed)

End

ActionClient.complete_form

Me(holding_form--r form_completed)

End

The ‘Client’ is then able to interact with the previously
selected ‘Clerk’ via the interaction ‘submit application’;
moving to the state ‘awaiting decision’. Note that, the
previously established association forces the ‘Client’ to
interact with the correct ‘Clerk’; the one that issued the
form.

This will be followed by an interaction, driven by the
Committee, which moves the ‘Clerk’ role into the state
‘decision ready’. Hence, both paths return to the same
state; ‘decision ready’.

Interaction Client.submit_application

Me(form_completed-

awaiting-decision)

Clerk(form_issued-

Finally, the Clerk may give the decision to the associated
(correct) Client. As a result of this interaction ‘give
decision’, the Client is moved to their ‘final’ state and
the Clerk returns to an ‘initial’ state, in order to carry
out further work.

application-received)

End

InteractionClerk.give_decision

Me(decision_ready+initial)

Client(awaiting_decision + final)

End

Later, the ‘Client’ role is moved into its ‘final’ state by an
interaction initiated by the ‘Client’ role.

6.3. Council Clerk

Note that the sequential nature of this process is of course
highly inefficient, and the Clerk may become a bottleneck.
Indeed, this is one of the aspects of process that modelling in
notations such as RolEnact highlight, and one of the argu-
ments for their usage.

For brevity, the Council Clerk is referred to simply as
‘Clerk’ in the RolEnact model. Clerk (like all roles) starts
in the default ‘initial’ state. The ‘obtain form’ selection (of
the Client) moves the Clerk to the state of ‘form issued’.
Subsequently an interaction with the same Client role
instance, ‘submit application’, moves the Clerk from
‘form issued’ to the new state ‘application received’.

At this point the Clerk role has had two state changes, but
has been passive in both. The clerk has now received the
application and checks whether it is necessary to involve the
Planning Committee in responding to the Client. If not then
the Clerk makes the decision and moves to the state ‘deci-
sion ready’ (see below).

6.4. Committee

The ‘Committee’ role, in common with the others, starts
in an ‘initial’ state. The selection ‘refer’ of the ‘Clerk’
causes the ‘Committee’ to move to the state ‘meeting
needed’ (see Section 6.3). From this state, the role is able
to perform the action ‘decide at meeting’, and move to the
state ‘decision taken’.

ActionCommittee.decide_at_meeting

Me(meeting_needed-

decision-taken)

End

ActionClerk.decide

Me(application_received+

decision-ready)

End

Once in this state, the ‘Committee’ is able to initiate the
interaction ‘publish minutes’, in which the ‘Committee’
returns to its initial state and the ‘Clerk’ is moved into the
‘decision ready’ state.

If the application needs referral to the Committee, a selec-
tion* moves the Clerk from the state ‘application received’
to ‘awaiting decision’. This selection moves the Planning
Committee (Committee) from the ‘initial’ state to the new
state ‘meeting needed’, and sets up an association between
the two role instances.

InteractionConunittee.publish_minutes

Me(decision_taken -initial)

Clerk(awaiting_decision -

decision-ready)

End

7. The RolEnact Windows interface
’ There is a need for the event involving the Committee to be a selection

because it is the first association between the ‘Clerk’ and the ‘Committee’.
In many real instances (and corresponding models) there will be only one
‘Committee’ and, hence, less need for the selection association.

RolEnact is a Windows-based application written in
Enact, a hybrid of object oriented and functional languages

lnedlient <- I

K. T. Phalp et al./Infotmation and Software Technology 40 (1998) 123-133

Fig. 6. The simple RolEnact interface.

131

[31]. A working model of RolEnact takes the form of a set of
co-operating Windows programs each enacting an instance
of a role in the business process being modelled [32].

Fig. 6 shows a point in the execution of a RolEnact model
of the example process. Each role instance is shown as a
separate window. Each window has four distinct parts: the
name of the window, a menu displaying a list of possible
actions that the role may perform, a text box which displays
the current state of the role, and a ‘do’ button, which sup-
ports the enaction of a chosen action.

The window name takes the name of the role class fol-
lowed by a digit (e.g. Clerkl). This is to allow multiple
instances of a role. The first instance created will be post-
fixed by ‘ 1’) the second by ‘2’, and so on (for example,
‘Clientl’ and ‘Client2’). The arrowed actions in the list
are those available to be enacted in the current state of the
system. For example, at the point in the process described in
Fig. 6, neither Client is able, to take part in any event.
Client1 has reached the final state, and Client2 is waiting
for a decision from the (only) Clerk”. The Clerk, being in the
state ‘application received’, is about to either ‘decide’ or
‘refer’ the decision (these being the arrowed available
actions). An action can be invoked by highlighting that
event and pressing the ‘do’ button (or by double clicking).
Suppose the Clerk makes the decision (enacts the activity
‘decide’; the model user double-clicking on ‘decide’).
The Clerk instance will then move to their next state
‘decision ready’. From this state, the Clerk may interact
with Clients in the state ‘awaiting decision’, moving the
Client instance to their final state, and returning to the
‘initial’ state.

It can be seen that each role instance in the enactable
model acts as described by its type description given

’ Further Clients, Clerks are Committees may be created using the Con-
trol role.

in RolEnact (see above). Furthermore, the resulting
behaviour is also in accordance with the RAD shown in
Fig. 1.

8. Advantages of enactable role models

The advantage of being able to run a RolEnact model on a
computer is that it allows both modellers and clients to
check process understanding. Initially the modeller is able
to check that they have an understanding of the current
process, and to validate this by running through the model
with representatives of the client organisation. Subsequent
modelling allows for analysis of alternative process
scenarios, finding sources of delay and so on. Finally, the
model may be presented to or used by clients in order to
make sure that it really reflects the intention of the Client
Organisation. The following examples show the kind of
issues that are easily illustrated by running a RolEnact
scenario, and that are often likely to be missed by inspection
of static models.

8.1. Correct assignment of responsibilities for driving the

process

It is very easy in constructing the RAD to give little
credence to the importance of which role drives the interac-
tion. The interaction can easily be seen merely as a point of
synchronisation for the roles, and a mechanism for commu-
nication. However, in the real world being modelled,
driving the interaction is extremely important for the
process as a whole to progress. It is necessary to assign
the responsibility for driving the interaction to the correct
role, since in the instantiation of the process it is necessary
to assign the responsibility for initiating the interaction to an
appropriate agent. Furthermore, since roles synchronise on

132 K. T. Phalp et alAnformation and Software Technology 40 (1998) 123-133

an interaction it may be important that it is clear which role
initiates this interaction in order to minimise slack time in
the process.

As an example, consider the ‘publish minutes’ interaction
between the Committee and the Clerk (see Fig. 1). The
diagram implies that the Committee drives the interaction.
The Committee prepares minutes and publishes them to a
(presumably waiting) Clerk, who extracts the data required
to answer applications. However, it may be more efficient if
the Clerk, knowing when the meeting is scheduled to take
place were to request the minutes from the meeting. For
example, it may be that the individuals comprising the
committee consider the activity of generating and publish-
ing minutes for their meetings to be a low priority. Giving
the initiative for obtaining the decisions to the Clerk will
ensure that the Clerk does not spend time waiting unneces-
sarily and that responses to applicants are not delayed.

Clearly, which of these scenarios is most useful depends
upon the nature of other considerations within the process,
such as resource availability, which actions are on the
critical path and so on. However, a modeller would wish
this to be visible to the client so that the correct decision is
made. By using the RolEnact scenario, the role that is
responsible for driving the interaction is made clear, since
this and only this role which will include each interaction in
its list of possible actions and interactions. Therefore, by
running through such a scenario the client is forced to
invoke each interaction from within the role to which it
has been allocated, and this choice is made more explicit
and visible.

9. Conclusions

The modelling notations presented in this paper share the
features of a number of paradigms. The authors recognise
that ease of use and understandability are important prere-
quisites for process modelling notations, particularly where
such notations are to be used for process elicitation. That is,
in order to find out about and understand the existing pro-
cess, it is necessary to have notations that will be readily
understood by non-technical users, with a relatively small
entry cost. Diagrammatic methods appear to offer the best
prospects for such use. Role-based perspectives appear to
provide a natural mapping to business processes, and nota-
tions such as RADs offer both formality and understand-
ability.

RolEnact appears to offer all of the advantages outlined
above. It is based on a condition-action paradigm, yet it
also has the advantage of providing a role-based perspective
upon business processes. It is easy to use the notation to
capture and describe business processes; particularly since
it maps to RADs - a powerful and popular diagrammatic
process modelling notation.

In addition, it i possible to generate RolEnact models
which can be run on a computer to provide process

simulations so that users may experiment with processes.
The paper has shown examples of how such experimenta-
tion can lead to increased process understanding, which
users would be much less likely to gain using only static

process models.
This use of RolEnact models is akin to the use of execu-

table specifications in software development. The authors’
believe that by using enactable models of business process,
process specification errors will be reduced, as will the costs
of implementing processes, and process support.
Furthermore, by having a more rigorous validation of the
process specification the business processes, which are

implemented, will better match the needs of client
organisations.

References

[1] M. Dowson, Are software processes business processes too, Panel

Session of the Proceedings of the Third International Conference on

the Software Process, Reston, VA, IEEE Computer Society Press,

1994.

[2] R.A. Snowdon, A brief overview of the IPSE 2.5 Project, Ada User 9

(4) (1988) 151-161.

[3] V. Ambriola, Related domains session, Proceedings of the Second

European Workshop on Software Process technology, Vilard de

Lans, Grenoble, France, February 1994, Lecture Notes in Computer

Science, Elsevier Science, Amsterdam, 1994.

[4] V. Gruhn, Software process management and business process (re-)

engineering, Proceedings of the Second European Workshop on

Software Process technology, Vilard de Lans, Grenoble, France,

February 1994, Lecture Notes in Computer Science, Elsevier Science,

Amsterdam, 1994.

[5] B. Kramer, B. Dinler, Applying process technology to hardware

design, Proceedings of the Second European Workshop on Software

Process technology, Vilard de Lam, Grenoble, France, February 1994,

Lecture Notes in Computer Science, Elsevier Science, Amsterdam,

1994.

[6] L.J. Osterweil, Software processes are software too, Proceedings of

the Third International Software Process Workshop, Breckenridge,

CO, IEEE Computer Society Press, 1986.

[7] L.J. Osterweil, Experiences with process programming, Proceedings

of the Fifth International Software Process Workshop,

Kennebunkport, Maine, USA, IEEE Computer Society Press, 1989.

[8) L.J. Osterweil, Example process program code, coded in AppllA,
Proceedings of the Fifth International Software Process Workshop,

Kennebunkport, Maine, USA, IEEE Computer Society Press, 1989.

[9] A. Ohki, K. Ochimizu, Process programming with prolog,

Proceedings of the Fourth International Software Process Workshop,

Moretonhampstead, Devon, UK, IEEE Computer Society Press, 1988.

[lo] M.M. Lehman, Some reservations on software process programming,

Proceedings of the Fourth International Software Process Workshop,
Moretonhampstead, Devon, UK, IEEE Computer Society Press, 1988.

[ll] M.M. Lehman, Models in software development and evolution,

Software Process Modelling in Practice, Kensington Town Hall,

London, UK, Butteworth-Heineman, 1993.
[121 G.E. Kaiser, Constructing enactable models, Proceedings of the

Fourth International Software Process Workshop, Moretonhampstead,

Devon, UK, IEEE Computer Society Press, 1988.

[13] B. Boehm, F.C. Belz, Applying process programming to the spiral
model, Proceedings of the Fourth International Conference on the
Software Process Workshop, Moretonhampstead, Devon, UK, IEEE

Computer Society Press, 1988.

K. T. Phalp et alAnformation and Soj?nm-e Technology 40 (1998) 123-133 133

1141 P. Henderson, Object-oriented specification and design with C + + ,
The McGraw-Hill International Series in Software Engineering,

McGraw-Hill Book Company, New York, 1993.

[15] B.W. Boehm, Software Engineering Economics, Prentice-Hall,

Englewood Cliffs, NJ, 1981.

[161 A. Gravell, P. Henderson, Executing formal specifications need not be

harmful, Software Engineering Journal 11 (2) (1996).

[17] M.A. Ould, C. Roberts, Modelling iteration in the software process,

Proceedings of the Third International Software Process Workshop,

Breckenridge, Colorado, USA. 17-19 November 1986, IEEE

Computer Society Press, 1986.

[181 N.H. Madhavji, The Process Cycle, Software Engineering Journal

6(5) (1991) 2344242.

[19] D. Miers, Use of tools and technology within a BPR initiative, in:

Business Process Re-engineering: Myth and Reality, Kogan Page,

London, 1994.

[20] B. Curtis. M.I. Kellner, J. Over,, Process Modelling Communications

of the ACM 35 (9) (1992) 75-90.

[21] E. Yourdon, Modem Structured Analysis, Prentice Hall, Englewood

Cliffs, NJ, 1989.

[22] G. Tate, Software process modelling and metrics, Information and

Software Technology 35 (6/7) (1993) 323-330. Special Issue on Pro-

cess Modelling in Practice.

[23] C. McGowan, L. Bohner, Model based process improvement,

Proceedings of the 15th International Conference on Software

Engineering, Baltimore, MD, IEEE Computer Society Press, 1993.

[24] ICL, ProcessWise WorkBench User Guide, PWB/usrguide/S5.4,

International Computers Limited, August 1995.

[2.5] M.A. Ould, An introduction to process modelling using RADs,

illustrated by reference to the case study, in: IOPTCLUB Practical

Process Modelling, Mountbatten Hotel, Monmouth Street, Covent

Garden, London, 1992.

1261 C.B. Handy, On roles and interactions, in: Understanding

Organisations, Penguin Modem Management Texts, Penguin Books,

Harmondsworth, Middlesex, England, 1976.

[27] M.A. Ould, Business Processes Modelling and Analysis for Re-

engineering and Improvement, Wiley, New York, 1995.

[28] G.K. Abeysinghe, K.T. Phalp, Combining process modelling

methods, Information and Software Technology 39 (2) (I 997) 107-

124.

[29] Co-Ordination, RADitor version 1.5: Users Manual, Co-Ordination

Systems, 1994.

[30] GISIP, Geographical Information Systems Integration Process, 1996.

Esprit project home page at: http://dsse.ecs.soton.ac.uk/-kp/gisip.html.

[31] P. Henderson, Enact User Manual, April 1995, available at http://

dsse.ecs.soton.ac.uk/-peter/cv.html.

[32] P. Henderson, Making Models of Process Support in Enact, November

1995, available at http:Ndsse.ecs.soton.ac.uk/-peter/cv.html.

