
ELSEVIER Information and Software Technology 39 (1997) 107-124

Combining process modelling methods

Geetha Abeysinghe, Keith Phalp*

Department of Electronics and Computer Science, University of Southampton, Mountbatten Building, Highjield, Southampton SO17 IBJ, UK

Received 10 August 1995; revised 7 March 1996; accepted 25 April 1996

Abstract

This paper examines two modelling paradigms, namely Hoare’s Communicating Sequential Processes (CSP) and a subset of Role
Activity Diagrams (RADs) and shows how they can be combined to give a new approach to process modelling. We examine the two
notations by reference to processes from two different business domains. For each domain, we transform a RAD model (by way of
methodical mapping) to arrive at an equivalent formal CSP model. The latter is then explored using a stepper, which allows for
process simulation by executing the model. The paper suggests that by providing a mapping between these notations we gain the
accessibility of a well understood user-facing modelling paradigm, (RADs), whilst retaining the formality of CSP. This provides us
not only with the advantages of understandable user-facing models, for process elicitation and presentation, but also gives us the
ability to experiment with (by process simulation) the effects of process change.

Keywords: Business process modelling; Business process reengineering; Role activity diagrams; Communicating sequential processes

1. Introduction

Any business can be viewed as a collection of pro-
cesses. These processes change as organizations evolve
over time in response to their business environments.
To keep ahead of the market competition, new ideas
and change of business tactics have to be achieved
quickly and efficiently. Process modelling has evolved
as a technology for describing processes such that they
may be understood and evolved with greater ease, and
increased organizational visibility.

Within process modelling there are many methods and
notations which may be used in order to describe the
process under scrutiny. These methods range from for-
mal (mathematical) rigorous notations, to more graphi-
cal (easier to understand) notations. Each of these kinds
of notations has its own advantages and problems. Typi-
cally formal notations, may be executed on a computer
and run (as programs) to study in detail the behaviour
of processes. However, the main problem with such
notations is that they are difficult to present to anyone
other than an expert. Hence, it is difficult to validate
process scenarios with users. In contrast, diagrammatic
or graphical notations are excellent for process elicitation

* Corresponding author. email:kp@ecs.soton.ac.uk, http://dsse.ecs.
soton.ac.uk/-kp/

0950-5849/97/$15.00 0 1997 Elsevier Science B.V. All rights reserved

PII SO950-5849(96)01126-3

and presentation, since they may be understood with rela-
tive ease in a short space of time. However, they do not
provide the benefits of rigorous process experimentation
which can be gained with enactable notations.

In this paper we study two existing modelling para-
digms, namely, a subset of Role Activity Diagrams
(RADs), and Hoare’s ‘Communicating Sequential Pro-
cesses’ (CSP). These may be considered as best practice
examples of both diagrammatic and formal notations.
In studying these notations we make some comments
about their use in modelling business processes, but the
main motivation for our study is to arrive at a method
of mapping from one paradigm to the other. The idea
behind mapping from one notation to the next is to
arrive at a coherent modelling method which will retain
the advantages of both models, without having the asso-
ciated weaknesses outlined above.

Our modelling method uses RADs, as a user-facing
notation. This means that this notation is used in order
to capture the process, and validate it with users. Having

done this capture, the RADs are mapped to CSP for
more rigorous experimentation with process, and with
possible process changes. The results of this experimen-
tation are fed back into new RADs which are again
presented to users, and so on. Finally the new process
is presented in RADs in order to educate process users
about proposed changes. Hence, the formal notation

108 G. Abeysinghe, K. Phalpllnformation and Software Technology 39 (1997) 107-124

These are equivalent descriptions

able to select goods or . . .
(to extend: able to choose)

able to select goods or . .

RADs consist of states and events

They are not flow charts

able to select

This loop is to show that we return to the
same state (are able) to select again.

It is not a flow chart (goto).

Fig. 1. Alternative descriptions of recursive behaviour

need not be presented to the users, but can be used to test
the logic of the process with some rigour.

We present two kinds of process examples to illustrate
our methods. We start with a simple example, ‘shop-
ping’, which is a simplified view of the retail process.
We use this example as a common reference point in
order to describe the elements of both notations, and
to introduce our rules for mapping from RADs to
CSP. We then present a more complex example, which
describes the upstream activities of an industrial soft-
ware development process. We use the latter (real
example) in order to test our mapping, and to show
that it remains valid for a genuine industrial process.

2. Background to the modelling paradigms

Role Activity Diagrams are a notation originally
developed for software process modelling [l]. In the
UK they have been used and promoted by both Praxis
[2] and Co-Ordination Systems [3], and their merits
have been discussed at a number of tutorials and meet-
ings on process modelling - notably those supported by
the IOPTClub [4]. A CASE tool for process modelling
RADitor [5] marketed by Co-Ordination systems uses
Role Activity Diagrams as its diagramming method.
RADs can be considered to be a state of the art single
paradigm process modelling approach, and are well
known among the process modelling community (parti-
cularly in the UK).

CSP is a programming language based on concurrency
and communication introduced by Hoare in 1978 [6]. In
this paper we view CSP as a process modelling paradigm
rather than as a programming language. CSP has two
forms, event CSP and channel CSP. We will be consider-
ing only event CSP (and will be referred to as CSP from

here on) in this paper. Hoare’s CSP has been implemented
in a stepper [7] using the executable specification language
Enact [8]. The existence of the stepper is an added advan-
tage in using CSP. We have simulated the parallel
behaviour among processes using the CSP stepper.

2.1. An example process: shopping

We choose as our first example process ‘shopping’;
how retailers process their customers. This is to allow
our initial choice of application domain to be some-
thing familiar to all our readers. In our scenario a
customer having entered the shop should be able to select
goods and then pay for what s/he has selected, return
goods and then get a refund for the goods returned,
or leave the shop. During the time the customer is in
the shop, s/he should be able to select and/or return
goods any number of times s/he desires to until the
customer decides to leave the shop. The shop should be
able to display goods for the customer to select and man-
age the transaction of receiving money for those goods.

2.2. Elements of the modelling notations

In describing the elements of the modelling notations
we will make reference to our ‘shopping’ example and
present descriptions of shopping in both RADs and CSP.

2.2.1. Roles and activities versus processes and events

Roles and activities. The central concept of Role
Activity Diagrams is that of a role. A role describes a
sequence of steps or activities which can be acted out by
a person or perhaps by a group or department. Roles
are acted out in parallel and communicate through inter-
actions (see below). It is important to realize that a

G. Abeysinghe. K. Phalp/Information and Software Technology 39 (1997) 1077124 109

role is merely a type. For example, it may describe the
behaviour of a class of people. So, a role may describe
the responsibilities and interactions of a manager, or a
cashier or some other role’. A single instance of a role
can be acted by many people, and similarly a single
person may act many role instances. For example, one
person may act as a project manager role and also as
an engineer role.

A role has a thread of activities (represented by square
boxes) within it, and is read from top to bottom,
activities being connected by state-lines (the state
between them). The intention is for the notation to be
much more akin to Finite State Machine [9,10] or to
Petri-net [l l] approaches than it is to flow charts, and
some authors use a circle to label states in order to
further emphasize this distinction [2,5,12].

Indeed, this use of a circle to label states is a conven-
tion which we will adopt in this paper. Furthermore, we
will always avoid using loops, preferring to use these
state labels to show the way roles can return to previous

states (see Fig. 1).
There are two kinds of activities within a role, actions

and interactions. In Role Activity diagrams an action
is a process step that the actor of the role carries out
in isolation. Thus actions do not involve any joint
behaviour with another role. An action changes the
state of the role in which it occurs. Actions are repre-
sented by a shaded (we have shown as black) square. An
interaction between two roles implies that they have
some shared or joint behaviour, and is represented by
joining activities (left unshaded) within different roles
by a horizontal line. An interaction may change the
state of any of the roles which are involved in that
interaction.

Processes and events. The main concept of CSP is a
process. A process describes how an object behaves.
The set of events which a process participates in,
is known as its alphabet; the alphabet is a process P
is denoted as crP (in our notation). A process is defined
in terms of the events in its alphabet by defining the
allowable sequences of events. In CSP an event is
assumed to be instantaneous or, in other words, it is
an action which does not take any time to occur.

In describing CSP we adopt the following convention:
event names start with lowercase letters, process names,
and variables denoting processes start with uppercase
letters. For example, in ‘shopping’ an example of a
process is a customer which may have the following
alphabet:

acustomer := {enter, select, payment, return,

leave}.

’ Note that a role may not always be a person. It may, for example,

describe the behaviour of a system which interacts with people.

Customer

Fig. 2. ‘Customer’ process = enter followed by ‘Shopping’ process.

A process is described by the sequence, (event -+
Process). The operator ‘+’ denoting sequence. The
customer process in ‘shopping’ can be described (simpli-

fied) as,

Customer := enter + Shopping

The above describes a process Customer which first
executes (or participates in) the event of entering the
shop, enter, then executes the process of Shopping.
The process Shopping may constitute of a number of
events such as, selecting goods, paying for the goods,
and so on.

We can show this pictorially as in Fig. 2.
In the pictorial view we represent the processes by

circles (the process being defined, for example, process
Customer in the above picture, as a filled circle. Other
processes for example, Shopping in Fig. 2, as unfilled
circles) and events by the named connecting arrows.

It should be noted that the operator ‘-+’ always
takes an event on its left and a process on its right. The
sequential combination of processes on the other hand
is described by the operator ‘ ; ‘. For example, if P and Q
are two processes, the combination (P;Q) describes a
process which first behaves as P, when P terminates
successfully, then behaves as Q. If P does not terminate
successfully the behaviour of Q is never executed. The
successful termination of a process is represented by
‘SKIP’ (this will be further described in Section 2.2.3).
For example, in the ‘shopping example we can describe
the process Shopping by two sequential processes as:

Shopping : = Select_Goods; Leave

where Select_Goods is the process of selecting and pay-
ing for goods and Leave is the process of a customer
leaving the shop. According to the above description
the customer has to successfully complete the process
of selecting before he is able to leave.

2.2.2. Alternate or choice
Role Activity Diagrams have two constructs for show-

ing alternative or parallel paths within a role. Alternative
paths are where the choice is dependent on some (yes-no)
condition. This construct is usually denoted by an
inverted triangle. The following denotes:

if X is chosen then, follow path A, else
follow path B.

110 G. Abeysinghe, K. Phalpjlnformation and Software Technology 39 (1997) 107-124

Customer \

F
enter

able to select I leave

choose select

able to select I pay

able to select I pay

able to select

Cashier

signed-off (unable to
process customer)

c sign-on

P si ned-on
(atIe to process
customer)

choose
sign-off

_9 pa y menqsign-off

i)rocess
customer

Fig. 3. Role activity diagram of a ‘Shopping’ process. The diagram shows two roles: customer and cashier for a retail outlet, e.g. a supermarket.

Having entered the customer may choose to select goods or leave. Once goods have been selected the customer must make a payment before leaving.

However, a number of selections can be made before paying. On payment there is an interaction with the cashier. This is only possible if there is an

instance of a signed-on cashier for the customer to interact with.

A simple example of a customer interacting with a or leave. This scenario can be described by a simple

cashier is represented in Fig. 3. choice as given below.

After the customer enters the shop s/he is faced with
the choice of leaving the shop or selecting goods. This is
represented by the two inverted triangles named ‘choose
leave’ and ‘choose select/return’ respectively. Once the
customer has done a selection (action ‘select’) s/he has
the choice of selecting more goods (the alternate ‘choose
select’) or paying for what is already selected (alternate
‘choose pay’). Ould refers to such alternative courses of
action in a RAD as ‘case re$nement’, refining the state
of the process according to different cases [2].

Customer := enter -+ Shopping

Shopping := Select-Pay

I L eave

The effect of the choice operator ‘I ’ is that when one
path is chosen the process is committed to pursue that
path; in other words all other paths in that choice
become inaccessible.

In CSP a simple choice is described by the operator ‘I’.

This allows the user to define alternate behaviours of an
object. For example, taking the simple customer example
shown in Fig. 3, a customer after entering the shop can
either do shopping (that is select goods and pay for them)

The CSP description above can also be represented by
a state-event diagram (see Fig. 4).

2.2.3. Parallelism

RADs display two kinds of parallelism; the role
instances acting in parallel, and the threads of parallel
activities within a role. In the ‘shopping’ example in
Fig. 3, we can identify two parallel roles, cashier and
customer. Role Activity Diagrams assume no ordering
on the way instances of roles proceed. In other words,
the RAD describes the behaviour of the role, and its
relations to other roles, but it does not describe the allo-
cation of resources to roles, or the number of roles
active at any one time, and so on. For example, an
instance of a cashier role may be acted out by the same
person who previously acted as a supervisor, but this
may happen in parallel with another instance of the

Customer :i;c:
(FJ enter

Shopping

Select-Pay

Leave

Fig. 4. ‘Shopping’ process = leave or choose to select and pay.

G. Abeysinghe, K. Phalpllnformation and Software Technology 39 11997) 107-124 111

supervisor role. Similarly there will be a number of
cashier roles acting in parallel at any one time. Roles
are not descriptions of instances of behaviour rather
they describe a type of behaviour to be acted by the
role. With Role Activity Diagrams the parallel con-
struct is used to show the behaviour within a role, not

to co-ordinate them (as CSP does with processes).
We can also have parallel (or concurrent) threads

of activities within a role. These parallel vertical threads
are denoted by the ordinary triangle symbol, a. Ould
calls this ‘part rejinement’, refining (or dividing) the
state of the role into a number of separate parts [2].
There is no choice here, and thus no forcing down one
thread. Indeed, it is assumed that all paths are taken. We
will further examine parallel threads in our second (more

complex) shopping example.
CSP gets its strength from its ability to describe pro-

cesses that can be executed in parallel. The convention
used to represent parallel composition in CSP is ‘II’. A
complex process can be described as a number of simple
processes running in parallel. When two or more pro-
cesses are executed in parallel the processes synchronize
in their shared events. That is, where two processes have
the same event in their alphabets they both must execute
that event simultaneously [13]. Therefore, CSP is said to
support broadcast communication.

If we take a more complex example of ‘shopping’
where the customer is able to return goods then the cus-
tomer can be described elegantly by,

CUST := (enter + Shopping) ; (exit + CUST)

The process Shopping can be described as,

Shopping : = (SelectGoods)* 11 (ReturnGoods)*

In the above description ‘* ’ means, ‘may be executed
zero or more times’. Therefore, the above CSP descrip-
tion implies that a customer after entering a shop is
able to ‘select goods and then select more or pay’ and/
or ‘return goods and then get refund’ zero or more times
before deciding to leave the shop. In this case we define
the processes SelectGoods and ReturnGoods as given
below:

SelectGoods := select+SelectGoodsi

SelectGoods, := (select --t SelectGoodsi)

I (payment --t SKIP)

This (above) description implies that once the
customer has done a select event s/he is faced with
the choice of selecting more or paying for the selected
goods. The process of returning goods can be des-
cribed as:

ReturnGoods : = return + payback -+ SKIP

This (above) description describes the behaviour of
the customer who returns one or more items and gets a

refund. This sequence of events can be repeated any
number of times until the customer decides to leave the
shop. Once the customer leaves the shop s/he is able to
behave in a similar manner once again, indicated by

‘(exit + GUST)‘.
In the simple ‘shopping’ example introduced in Fig. 3,

we can describe two processes, the customer and the
cashier. In Section 2.2.2 we described the Customer as:

Customer : = enter + Shopping

Shopping := Select-Pay

I L eave

The customer may enter the shop, select goods and pay
for them or leave the shop. This behaviour is described
by the processes Shopping and Leave respectively.

Select-Pay : = select-+ Select-Pay

1 payment+ SKIP

Leave := leave -+ SKIP

The cashier may sign on, receive payment from the
customer or sign off. These two simple processes can
be described in CSP as follows:

Cashier := signOn + Signed-On

Signed-On : = (payment -+ Signed-On)

I (signOff -Cashier)

In the shop the two processes, Customer and Cashier,
will be carried out concurrently. In CSP we define this as:

Shop := Customer II Cashier

When executing the process Shop, Customer and
Cashier should synchronize in the shared event ‘pay-
ment’. In other words the Customer cannot pay for the
goods until the Cashier is ready to participate in
the event payment, that is, the cashier should be in the
state signed-on (Fig. 3). This synchronization is also
indicated in the RAD, the difference being that RADs
synchronize between roles.

The parallel mechanism in CSP in conjunction with
communication on shared events can be used to con-
trol complex communicating processes. However, the
parallel threads within a RAD are more akin to the use
of the parallel operator within a process than its use to
control separate processes.

2.2.4. Interactions and shared events

We have noted that an interaction in Role Activity

Diagrams may change the state of any role which parti-
cipates in that interaction. For example, in Fig. 3, the
interaction ‘payment’ changes the state of both roles,
customer and cashier. Before the payment the customer
may either select more goods or pay for goods, but
may not leave. After payment the customer may select
again or leave. The payment activity changes the state

112 G. Abeysinghe, K. Phalpllnformation and Software Technology 39 (1997) 107-124

of the cashier so that s/he can process the next
customer. The shared (interaction) of activities must
take place synchronously. This synchronization may
take place over time, and may be quite complex. We
are allowed to represent complex interactions, for
example, gaining agreement, with this same construct.
Another RAD would be used to examine the details of
such an interaction.

The equivalent of an interaction in CSP is where
parallel processes co-ordinate on shared events. For
example, the exchange of money for goods between a
cashier and the customer (which is a synchronous inter-
action) can be described (over-simplified for clarity) as:

Cashier : = signOn + (payment + . ..)

Customer : = enter -+ (select -+ payment + . .)

When the two above processes are executed in parallel
the shared event, ‘payment’ must occur at the same
time thus co-ordinating the two processes. For example,
according to the above description a customer can
enter and select at any time but will be able to pay only
after a cashier signs on. Similarly a cashier, after signing
on, can accept payment only after the customer has
finished selecting.

3. Mapping between CSP and RADs
Part one: shopping

Here we examine whether we can map between equiva-
lent constructs in both notations, specifically whether
we can take a RAD and describe it in CSP. We first
illustrate our mapping ideas with reference to versions
of the shopping example. We introduce a subset of our
mapping rules and show the original RAD descriptions
and the equivalent CSP. We will then go on to describe
how our mapping works for our example of a portion of
the software development process, which describes the
upstream (requirement activities) of an industrial soft-
ware developer.

We have used a CSP process to be equivalent to a
RAD role. If we take the shopping example, the custo-
mer process can be decomposed into events, just as
the role can be decomposed into actions. However,
CSP supports high levels of abstraction, in that a process
can be defined in terms of other processes. For example,
the process Shop can be defined as the parallel composi-
tion of the two processes, Customer and Cashier, given
in CSP as,

Shop = Customer 1) Cashier

A process which exhibits the same behavioural pattern
repeatedly is defined in CSP using recursion. Taking
the Customer process in our ‘shopping’ example; after
leaving the shop the customer can display the same

behavioural pattern again, that is enter a shop and do
shopping. We can describe such behaviour as:

Customer := (enter+ Shopping); Customer

Similarly, in Section 2.2.3 we represented the fact that
once the customer has selected goods, s/he can select
more or pay for the selected goods by,

Select-Pay := select + Select-Pay

1 payment + SKIP

In RADS this repeated behaviour is represented by
using a state label for the point of return. In a RAD a
state can represent potential future behaviour, or an
indication of the past behaviour, or both. The above
CSP is represented in Fig. 3 by repeated returns to the
state ‘able to select/pay’, after each occurrence of select-
ing goods (the action ‘select goods’).

A further distinction between the notations is that an
interaction in a RAD can occur over time, e.g. we might
have an action ‘reaching agreement’ whereas CSP events
are usually thought to be instantaneous. If we wish to
represent a non-instantaneous event in CSP, we normally
define two separate events; one denoting the start of
the activity, the other denoting the completion [13].
Despite these arguments we can construct an equivalent
description in both paradigms. We first use a simple
example of a customer interacting with a cashier, as
introduced in Fig. 3.

In order to make our mapping explicit we will now
describe the initial rules which we use to map from a
RAD to an equivalent description in CSP. (Note that
we introduce further rules later in our software develop-
ment example. However, in the interests of clarity we
will only introduce rules as required.) We will then
apply these rules to our simple RAD process model in
order to arrive at our CSP model.

(1)

(2)

(3)

Roles become higher level CSP processes running in
parallel.
Therefore we get,

Shop = Customer 1 1 Cashier

We read each role by stepping through states from
top to bottom, converting each action to a CSP event.
We thus get the following alphabets:

aCustomer:= {enter, select-goods, payment,
leave}

&ashier:= {sign-on, payment, sign-off }

Each event (action) moves the process (role) to its
next state. At each point where we encounter a
state which represents a point of return we create
a new sub-process with a name representing that
state. In the case where the state is the first con-
struct of the role, then the process takes the name

G. Abeysinghe. K. Phalpjlnformation and Software Technology 39 (1997) 107-124 113

of the role itself. Thus, we can describe the process
Cashier as,

Cashier : = sign-on -+ Signed-on

Customer : = enter + Select-Leave

(4) The RAD alternate construct (an inverted triangle)
becomes a simple choice in CSP. Each alternative is
converted into an individual process. The name of
the process is taken from the given choice. Hence
the first choice the customer has after entering the
shop is to ‘choose to select’ or ‘choose to leave’,
and these are represented by the sub-processes (of
Customer) ‘Leave’ and ‘SelectGoods’ respectively.
The Select-Leave process is therefore written as:

Select-Leave := Leave

/ SelectGoods

where,

Leave : = leave ---) Customer

SelectGoods : = select-goods -+ SelectGoods

I Pay

Pay := payment + Select-Leave

Similarly, the cashier, having signed-on, may choose
to ‘process customer’ or ‘sign-off’, and these can
again be represented by separate processes, namely
‘ProcessCustomer’ and ‘SignOff ‘. The process
Signed-on can be then described as,

Signed-on ._ - ProcessCustomer

I SignOf f

SignOf f .- .- sign-off 3 Cashier

ProcessCustomer := payment-+ Signed-on

(5) Each parallel path also becomes an individual CSP
process (sub-process). However, these processes will
run in parallel, rather than being alternatives. Parallel
paths enable the role to be in any of the states implied
by each parallel thread.

If the leaf state of a parallel thread denotes the
returning to a point outside the thread, then that
state is converted to a successful termination of that
thread (the process SKIP in CSP).

For this example we have no parallel paths in the
roles.

(6) Interactions become shared events. The common
event gets included in the alphabets of all processes
involved in the interaction.

The two high-level processes, Customer and
Cashier, share the event ‘payment’. When the two
processes are executed in parallel, they synchronize
on this shared event.

Before the ‘payment’ the customer is in the state

‘able to select/pay’. In order for ‘payment’ to occur
the cashier must also be ready to participate in the
‘payment’ event, that is the cashier must be ‘signed-
on’. When the event ‘payment’ happens the customer
moves to the state ‘able to select/leave’ (note that this
initial state is represented in our CSP by the process
‘Customer’). The cashier also moves to the next state,
in this case, ‘signed-on (able to process customer)‘.

Putting these rules together we get the following CSP.

Customer := enter -+ Select-Leave

Select-Leave : = Leave
/ SelectGoods

Leave := leave + Customer

SelectGoods : = select-goods + SelectGoods

I Pay

Pay := payment + Select-Leave

Cashier .- .- signon -+ Signed_ on

Signed_ on .- .- ProcessCustomer

I SignOf f

ProcessCustomer : = payment -+ Signed-on

SignOf f ._ .- signoff -+ Cashier

Using the CSP stepper we can execute the CSP model
given above. For example, we can execute in parallel the
Cashier and the Customer processes, given in CSP as:

Shop := Cashier 11 Customer

The logical of the business process model repre-
sented by a RAD can thus be tested by mapping it into
a CSP description. Similarly, a CSP description which
is slightly difficult to understand by the layman can be
represented by a more easily understandable RAD. The
two paradigms complement each other in this way.

We now consider a more complex shopping example
to further test our method for mapping from RADs
to CSP. Applying the rules of mapping we get as before:

Shop := Customer 11 Cashier

where each process will have the following alphabets
(Rule 2)

aCustomer : = {enter, leave, select, payment,
payback} and

&ashier := {sign-on, payment, payback, sign-off}.

114 G. Abeysinghe. K. Phalpjlnformation and Software Technology 39 (1997) 107-124

Customer

customer not in shop

able to leave I select I return

choose select I return

g;I~“e, se,ect

/ pay I return

r
Cashier

signed-ofl (unable to process

signed-on (able to

process customer

Fig. 5. More detailed role activity diagram for ‘Shopping’.

We will now consider the remaining rules taking each
role in turn.

Customer Role
Applying Rule 3, we can describe the process Customer
in CSP as:

Customer := enter + Leave_Select_Return

Dealing with alternate threads, as given in Rule 4, we
describe the process

Leave_Select_Return as,

Leave-Select-Return := Leave

1 Select-or-Return

where the process Leave as described for the previous
example is,

Leave : = leave + Customer.

Dealing with alternate threads (as given in Rule 4) we
describe the process,

Select_or_Return as:

Select-or-Return : = (Select (ReturnGoods)

Select : = select --) Select-or-Pay (Rule 3)

Select-or-Pay : = SelectAgain (Rule 4)

I Pay

SelectAgain : = select + Select-or-Pay

Pay :=payment-+Leave_Select_Return

The process Return is described as,

ReturnGoods : = payback+ Leave-Select-Return

Shop : = Customer 1 1 Cashier

Customer : = enter -+ Leave-Select-Return

Leave-Select-Return : = Leave
1 Select-or-Return

Leave : = leave + Customer.

Select-or-Return : = Select 1 ReturnGoods

Select := select -+ Select_or_Pay

Select-or-Pay : = SelectAgain

I Pay

SelectAgain : = select -+ Select-or-Pay

Pay := payment -+ Leave-Select-Return

ReturnGoods : = payback + Leave-Select-Return

G. Abeysinghe. K. Phalpjlnformation and Software Technology 39 (1997) 107-124 115

Cashier role
The Cashier is described as,

Cashier := sign-on--(Signed-on.

Signed-on := Process-Customer

I Sigr_off

Process_Customer := Pay 1 Return

Pay := payment -+ Signed-on

Return := return-+ Signed-on

Sign-off := sign-off + Cashier

Cashier ._ .- sign-on + Signed-on

Signed-on := Process_Customer

I Sign-off

Process_Customer := Pay
1 Return

Pay := payment + Signed-on

Return := payback4 Signed-on

Sign-off := sign-off -+ Cashier

need articulated

4. Mapping between CSP and RADs
Part two: launch process

4.1. The mapping experiment process

In order to test our mapping more thoroughly we have
chosen to model a more complex process. Rather than
choose an artificial example, we have chosen to model
part of the upstream (requirements-based) activities of
a real software development process.

An immediate problem with using RADs for such a
process is that the diagrams soon become large and
unwieldy. Hence, we have chosen to split the process
into four linked RADs. Two of the RADs (Figs. 6 and
8) describe the higher level elements of the process. These
are linked by RADs (Figs. 7 and 9) which show the
details of two important interactions. In addition, Fig. 7
shows the link between Figs. 6 and 8, i.e. ‘project team set
up’ and ‘approved project’ respectively.

In using this idea we have tried to be consistent with
the way interactions in RADs work. The interaction
here must still be synchronous, and will result in a change
of state of all of the roles involved in the interaction.
However, the choice of which next states the roles
move to is dependent on the interaction.

By using such an approach we overcome two problems

project

team
set up

pKhhX

phase plan

produce
phase plan

II wit approva

II

await approval

Fig. 6. Concept phase of project launch.

116 G. Abeysinghe, K. Phalpllnformation and Software Technology 39 (1997) 107-124

/
Phase Approval

state label. However, the activity and state label may
be separated by a decision point (i.e. a choice).

(2) Consequently, any change of state must be preceded
by an activity (or by a decision point). Again the
activity and state label may be separated by a deci-
sion point.

(3) Complex interactions which may result in multiple
changes of state2 (e.g. review meetings) may be
represented by a separate RAD. In order to denote
this, the activity will have thread lines coming from
it to show that the role continues elsewhere. An
example of this is given for the interaction (phase
approval) in Fig. 6. This new RAD may also be the
link to another RAD. e.g. Fig. 8 (phase approval)
links to Fig. 9 through the state ‘approved project’
or return to Fig. 7 through the state ‘project-team-
setup’. This stream of choices will not change our
mapping rules. That is, we will still form new pro-
cesses for each choice, and for each subsequent state
which is a point of return.

Fig. 7. Phase approval.

traditionally associated with RADs. Firstly, we are able
to split a complex diagram into manageable chunks. We
have found that in using RADs to analyse business
processes, the size and scale of processes has resulted
in very large and complex diagrams. Though RADs
are not intended to map the process at all levels of detail
in a single whole, it is still very easy to produce complex
depictions of processes, particularly since low level
details may sometimes have an impact at higher levels
of abstraction.

Secondly, we are able to use a hierarchical structure
to examine some of the important detail of certain key
interactions (see our rule number 3 in Section 3) and
to structure together individual RADs into a coherent
whole. As an added bonus, we can illustrate our mapping
in more accessible or manageable chunks. Hence, we will

start by considering each figure (each separate RAD)
in turn.

In order to further experiment with mapping between
paradigms we have attempted to increase the consistency
of our RADs by formulating some guidelines for draw-
ing our diagrams.

4.2. Guidelines for drawing RADs

(1) Any activity or interaction causes a change of state.
Therefore, we follow each activity by a corresponding

(4) We limit ourselves to a subset of RADs, using roles,
states, actions, interactions, parallel threads and
chosen threads.

(5) We interpret choice to be yes-no or to be multi-
choice, e.g. choosing one of three threads.

(6) We interpret parallel to mean concurrency over some
time period. That is that all paths will be followed.
If all paths do not have to be followed this implies
that a choice may be made, hence, choice can be used.

4.3. Mapping rules reminder and extensions to rules

(1) Roles become higher level CSP processes running
in parallel.

(2) We read each role by stepping through states from
top to bottom, converting each action to a CSP
event.

(3) Each event (action) moves the process (role) to its
next state. At each point where we encounter a state
which represents a point of return we create a new
sub-process with a name representing that state. In
the case where the state is the first construct of
the role, then the process takes the name of the
role itself.

(4) The RAD alternate construct (an inverted triangle)
becomes a simple choice in CSP. Each alternative
is converted into an individual process. The name of
the process is taken from the given choice.

(5) Each parallel path also becomes an individual CSP

’ A simple change of state is where the interaction moves all roles

involved in the interaction from their previous state to the next single

state (i.e. a before and after). A multiple change of state is where the

interaction may move (all) the roles to one or more new states (but

the same new state for all roles) depending on the details of the inter-
action - as shown in a seoarate RAD.

G. Abeysinghe, K. Phalpjlnformation and Software Technology 39 (1997) 107-124 117

Director Project

Leader
Marketing

Rep

I Engmeenng \

Rep

proposal OK and plan merged

Fig. 8. Feasibility phase of project launch

Launch Review

dots pro&chon (Eng. Rep)

describ~rg (Prq Leader C

Fig. 9. Launch review.

Project Support
Offlice

check plan

process (sub-process). However, these processes
will run in parallel, rather than being alternatives.
Parallel paths enable the role to be in any of the
states implied by each parallel thread. If the leaf
state of a parallel thread denotes the returning to a
point outside the thread, then that state is converted
to a sequence of two processes; the successful termi-
nation of the parallel thread (SKIP in CSP), followed
by the process representing the point of return.

(6) Interactions become shared events. The common
event gets included in the alphabet of both pro-
cesses (roles). However, for complex interactions
which are expanded in another RAD we use Rule 9
below.

New rules

(7) A process P is described as:

P:=e+Q

where e is an event and Q is a process.
If a role R has only one action e, then, that

role is converted to a process P, where P is described
as:

P := e + SKIP

118

(8)

(9)

(10)

(11)

(12)

4.4.

G. Abeysinghe, K. Phalp/Information and Software Technology 39 (1997) 107-124

The process SKIP in CSP denotes the successful
termination of a given process.
When we map a RAD into CSP, we create a new
process for each point of return. This means that
in some cases we may arrive at a CSP description
of the format:

A:=B

Where A is the role name and B is the point of
return we do not create a process with the role
name (since, this would cause duplication) rather
we create a process with the name of the point of
return. Similarly, if A is a point of return and B is
an interaction we ignore B, and create a process
with the name A - the point of return.
Complex interactions are expanded to form another
RAD. For the purposes of our CSP, we regard the
interaction as a sub-process.
Shared states which are also points of return will
be converted into sub-processes. However, where
these sub-processes are not actually the same we
will denote their distinct identity by using the
name of the role as a prefix.
In CSP, events and processes should have unique
names. In order to avoid having clashing names
for the processes which denote roles in our different
diagrams, we adopt a naming convention which
adds a prefix (based on the name of the new
RAD) when we encounter a role name which
would otherwise become overloaded. The exception
to this rule is where we expand an interaction to

give us another role. This is because the roles
involved in the interaction are already described
within the original RAD.
When our mapping produces two CSP processes
which follow each other without an intervening
event (e.g. A + B), the arrow is converted to “ ;”
which denotes sequence in CSP. That is, we specify
that the first process must end before the second

commence.

The mappings for each Role Activity Diagram

We now attempt to apply these rules to our RADs
which represent the upstream activities of a software
development process. For simplicity, we have described
the RAD using four different figures. Fig. 6 and Fig. 8
show the main RAD, whereas, Figs. 7 and 9 represent
two expanded interactions. Taking each figure in turn
and applying the rules, we will now attempt to arrive
at the CSP descriptions.

As we go through our rules we give examples of where

they are applied.

(1) Rule 1 - Roles become processes running

in parallel.

1 Customer_Contact (1 Mapping := Customer [
Director 1

Project-1 .eader 11 Marketing-Rep 11
Engineering-Rep

(2) Rule 2 - The actions each role participates in
constructs the alphabet of the corresponding

process.

aCustomer : = {discussion}

aCustomer_Contact : = {discussion,
approval}

aDirector : = {approval,

assign-team}

aProject_Leader : = {assign-team,

produce-phase-plan}

aMarketing_Rep : = {assign-team,

produce-phase-plan}

aEngineering_Rep : = {assign-team,

produce-phase-plan}

(3) Now we will consider each role in turn. Taking
the role ‘Customer’ and applying Rule 3 we get:

Customer :=discussion+ SKIP

Similarly for Customer_Contact we get:

Customer_Contact : = discussion

--f (approval4 SKIP)

Taking the Role Director we arrive at the

following:
Applying Rule 4: states which are return points

become sub-processes. Hence:

Director : = approval

--f (assign-team + Project-Team-Setup)

Using Rule 9

Project_Tearr_Setup := Phase_Approval

Note that phase approval is then expanded in
Fig. 7. Hence, phase approval becomes a sub-
process Phase-Approval. Again, applying Rule
7, we see in that Project_Team_Setup is a
point of return. Thus, we omit the sub-process
Phase-Approval in the description of Director
and describe the role Director in Fig. 7 using the
sub-process, Proj ect_Team_Setup.

Therefore, we do not have phase-approval
as an event in the alphabet of Director.

G. Abeysinghe, K. Phalpllnformation and Software Technology 39 (1997) 107-124 119

Instead the alphabet of the sub-process
Project_Team_Setup gets added to its alphabet.

cxProject_Teau_Setup : = {discuss, approve,

abandon, approve-rework}

The alphabet of Director thus becomes:

aDirector : = aDirector

UoProject_Team_Setup.

Similarly considering the roles Project Leader,
Marketing Rep and Engineering Rep we can
describe them as,

Project-Leader := assign-team

-+ Pro j ect_Team_Setup

Market ing_Rep : = assign-team

+ Project_TeamSetup

Engineering-Rep : = assign-team

--t Project_Teau_Setup

The alphabets of Project-Leader, Marketing_
Rep and Engineering-Rep becomes:

aProject_Leader : = &Project-Leader

U aProject_Tean_Setup

aMarketing_Rep : = aMarketing_Rep

U crProject_Tean_Setup

c~Engineering_Rep : = aEngineering_Rep

U aProject_Tean_Setup.

Although the state project-team-setup is
common to the roles Director, Project Leader,
Marketing Rep and Engineering Rep, the behav-
iour of each role after that state differs. That
is, the starting points (initial states) are the
same for each role but the subsequent triggers
and sub-states are not. Hence, using Rule 11
we get:

Director : = approval + (assign-team

4 Director_Project_Tea_Setup)

Project-Leader : = assign-team

-+ Project_Leader_Project_Tean_Setup

Marketing-Rep : = assign-team

--+ Marketing_Rep_Project_Tean_Setup

Engineering-Rep : = assign-team

-+ Engineering_Rep_Project_Teau_Setup.

(4 & 5) Fig. 6, has no choice or parallel constructs, there-
fore we will consider interactions (Rule 6).

(6) The interaction discuss is an event shared by
the processes Customer and Customer_Contact.
The interaction approval is an event shared by
the processes Customer_Contact and Director.
The interaction assign-team is an event shared
by the processes Director, Project-Leader,
Marketing-Rep and Engineering-Rep. The
interaction produce-phase-plan is an event
shared by Project_ Leader, Marketing-Rep,
and Engineering-Rep. As described before, the
interaction phase-approval (shared by Director,
Project Leader, Marketing Rep and Engineering
Rep) becomes a sub-process. In the process
Director alone this sub-process will be referred
to as Project_ Team-Setup but, in Project_
Leader,Marketing_Rep, and Engineering-Rep
the reference will be as phase-approval (quali-
fied by the role name). Putting this all together
we get the following CSP.

Customer :=discussion+ SKIP

Customer_Contact : = discussion
--+ (approval -+ SKIP)

Director : = approval + (assign-team
+ Director_Project_Tea_Setup)

Project-Leader : = assign-team
+ Project_Leader_Project_Tean_Setup

Market ing_Rep : = assign-team
+ Marketing_Rep_Project_Tean_Setup

Engineering-Rep : = assign-team
-+ Engineering_Rep_Project_Team_Setup

Project_Leader_Project_Tean_Setup
: = produce-phase-plan

+ Project_Leader_Phase_Approval

Marketing_Rep_Project_TeamSetup
: = produce-phase-plan

+Marketing_Rep_Phase_Approval

Engineering_Rep_Project_Tean_Setup
: = produce-phase-plan

--+Engineering_Rep_Phase_Approval

The RAD in Fig. 7 describes the interaction ‘phase-
approval’ between the roles Director, Project Leader,
Marketing Rep and the Engineering Rep and, hence,
is a part of the RAD described in Fig. 6.

The sub-processes which represent the inter-
actions: phase-approval, Director_Project_Team_Setup,

120 G. Abeysinghe. K. Phalpllnformation and Software Technology 39 (1997) 107-124

Project_Leader_Phase_Approval, Marketing-Rep_ review and will be described under Fig. 9. Since
Phase-Approval, and Engineering_Rep_Phase_Approval Feasibility-Director is a point of return, applying
are described below. Rule 7 to the above CSP, we ignore Feasibility-

Applying our rules to Fig. 6 and Fig. 7 we get the Director_Launch_Review and describe the interaction
following CSP. (Fig. 9) under the name, Feasibility-Director.

Director_Project_Tea_Setup : = discuss -+ (
(Approve;Feasibility_Director)

I Director_Not_Approved

)

Director_Not_Approved := Abandoned
1 Director_Approved_Rework

Abandoned := abandon + SKIP
Approved : = approve + SKIP

Director_Approved_Rework := approve-rework -+
Director_Project_Tea_Setup

Project_Leader_Phase_Approval := discuss + (
(Approve; Feasibility-Project-Leader)

I Project_Leader_Not_Approved

)

Project_Leader_Not_Approved := Abandoned
1 Project_Leader_Approved_Rework

Pro j ect_Leader_Approved_Rework : = approve-rework + Project_Leader_Project_Team_Setup

Marketing_Rep_Phase_Approval := discuss -+ (
(Approve;Feasibility_Marketing_Rep

I Marketing_Rep_Not_Approved

)

Marketing_Rep_Not_Approved := Abandoned
(Marketing_Rep_Project_Team_Setup

Engineering_Rep_Phase_Approval : = discuss +
(Approve; (Feasibility-Engineering-Rep 11 Project_Support_Office))

I Engineering_Rep_Not_Approved

Engineering_Rep_Not_Approved :=Abandoned
1 Engineering_Rep_Project_Team_Setup

Again applying our rules to Fig. 8, we get the following
CSP (note that we have omitted the alphabets for
brevity). Taking the role Director into consideration in
Fig. 8 we get:

Taking the remainder of the roles into consideration
we get the CSP description given below.

Feasibility-Director

:=Feasibility_Director_Launch_Review

where Feasibility_Director_Launch_Review des-
cribes the details of the complex interaction launch-

G. Abeysinghe, K. Phalpllnformation and Software Technology 39 (1997) 107-124 121

Feasibility_Project_Leader := initiate-document-production +

(Feasibility_Project_Leader_Describing;

Project_Leader_Launch_Review)

Feasibility_Project_Leader_Describing :=review+
(Feasibility_Project_Leader_Describing

1 Proposal_OK)

Proposal_OK := merge-plans-and-proposals-for-review-+ SKIP

Feasibility-Marketing-Rep := initiate-document-production +

(Feasibility-Marketing-Rep-Describing;

Marketing_Rep_Launch_Review)

Feasibility-Marketing-Rep-Describing :=produce-product-proposal+

(review +

(Feasibility-Marketing-Rep-Describing

((Proposal_OK)

)

Feasibility_Engineering_Rep :=initiate-document-production+

(Docs_Production :
Engineering_Rep_Launch_Review)

Docs_Production := (Feasibility_Rngineering_Rep_Describing 11 Planning) :
ProposalOK_and_PlanMerged)

Feasibility_Engineering_Rep_Describing :=

produce-product-proposal+ (review+

(Feasibility_Engineering_Rep_Describing

[SKIP)

)

Planning := produce-project-plan+

(check-plan+ (Planning

IEngineering_Rep_Pla_Checked))

ProposalOK_and_PlanMerged :=merge-plans-and-proposals-for-review-+ SKIP

Engineering_Rep_PlanChecked := merge-proj-plan-+ SKIP

Project_Support_Office := Check-plan +

(Project_Support_Office

1 Project_Support_Office_Plan_Checked)

Project_Support_Office_PlanChecked :=merge-proj-plan--,SKIP

The interaction ‘launch review’ among the roles Review, Marketing_Rep_Launch_Review, and
Director, Project Leader, Marketing Rep and the Engi- Engineering_Rep_Launch_Review.
neering Rep is elaborated in Fig. 9.

The RAD given in Fig. 9 represents the CSP processes:

Feasibility-Director, Project_Leader_Launch_

122 G. Abeysinghe, K. Phalpllnformation and Software Technology 39 (1997) 107-124

Feasibility-Director :=discuss + Launched

(Feasibility_Director_NotApproved

Launched :=launch+ SKIP

Feasibility_Director_NotApproved := Feasibility-Abandoned

1 Feasibility-Director

Feasibility-Abandoned :=feasibility-abandoned- SKIP

Project_Leader_Launch_Review :=discuss +

(Launched

1 Feasibility_Project_Leader_NotApproved)

Feasibility_Project_Leader_NotApproved := Feasibility-Abandoned

1 Feasibility_Project_Leader_Approved

Feasibility_Project_Leader_Approved := Feasibility_Project_Leader_Initiate

1 Feasibility_Project_Leader_HandOver

Feasibility_Project_Leader_Initiate := initiate_documentation-Feasibility_Project_Leader_Describing

Feasibility_Project_Leader_HandOver :=hand-over + Feasibility-Project-Leader

Marketing_Rep_Lauuch_Review :=discuss -+

(Launched

1 Feasibility_Marketing_Rep_NotApproved)

Feasibility_Marketing_Rep_NotApproved :=

Feasibility-Abandoned

1 Feasibility_Marketing_Rep_Approved

Feasibility_Marketing_Rep_Approved :== Feasibility-Marketing-Rep-Initiate

1 Feasibility-Marketing-Rep-HaudOver

Feasibility-Marketing-Rep-Initiate := initiate_docmentation+

Feasibility_Marketing_Rep_Describing

Feasibility_Marketing_Rep_HaudOver :=haud-over -+ Feasibility-Marketing-Rep

Engineering_Rep_Launch_Review :=discuss +

(Launched

I
Feasibility_Sngineering_Rep_NotApproved)

Feasibility_Engineering_Rep_NotApproved :=

Feasibility-Abandoned

I Feasibility_Rngineering_Rep_Approved

Feasibility_Sngineering_Rep_Approved := Feasibility-Engineering-Rep-Initiate

I Feasibility_Rngineering_Rep_HandOver

Feasibility_Sngineering_Rep_Initiate := initiate-documentation+ Feasibility_Engineering_Rep_Describing

Feasibility_Sugineering_Rep_HandOver := hand-over 4 Feasibility-Engineering-Rep

G. Abeysinghe, K. Phalp/lnformation and Software Technology 39 (1997) 107-124 123

4.5. Mapping between RADs and CSP: summary

We have demonstrated how we can apply mapping
rules in order to move from a RAD description of a
process to CSP. We can then test the logic of our process,
by stepping through a CSP description of the process
using Enact as the process modelling engine. This enables
us to reason about processes in a more formal way, and
to discover problems with process that merely drawing
pictures of the process would not discover. Indeed, in
our own work, we have found the RAD to CSP
mapping itself to be an iterative process, with the map-
ping to CSP forcing us to rethink the original depiction
of the process in RADs. Indeed, the mapping enables
us to make changes in CSP, then go back and change
the RAD, and to on round such a cycle until we reach
a stable and agreed process description. This kind of
process is vital to the process modeller. It enhances
the understanding of the process, and adds value to the
process modelling exercise.

The main advantage of simple diagrammatic model-
ling notations is that they are accessible to relative
novices. This is particularly important in business pro-
cess modelling because we often wish to check our
model by exposing it to process users. (This is perhaps
the main advantage that Role Activity Diagrams have
over more formal notations like CSP). However, the
relative ease with which the Role Activity Diagram can
be understood by the novice user is paid for by the
lack of formality. Contrast this with CSP, for which we
have a stepper, which allows us to simulate the behav-
iour of the process. This suggests that there is benefit
in attempting to use these two notations in a comple-
mentary way by using RADs to present and discuss
the business process with process users, and then experi-
menting with the process with an equivalent CSP
description.

5. Problems with our approach and further work in
progress

The work described here is only a partial solution to
our search for a coherent modelling method. It has four
iterative phases:

l Describe processes using a notation which users under-
stand (RADs).

l Map between the notation by applying rules.
l Experiment with processes using an executable

notation.
l Present static understandable models of the process

solution to users.

The two main problems with the approach, are that
the mapping is time consuming, and that the final
presentation notation is static. Hence, we aim to have

executable notations which retain the ease of under-
standability of a notation like RADs, which can be
used to present running (enactable) process solutions to
non-technical users. Current work is developing the
mapping idea further to produce modelling phases as
follows.

l Describe processes using a diagrammatic notation
which non-technical users will understand.

l Automatically generate enactable process code.
l Experiment with processes using an executable

notation.
l Describe process scenarios to users with an executable

model which is diagrammatic and easy to understand.

This new method uses a simple user-facing paradigm
which is mapped in stages to produce a model based
slide show, which provides such an understandable inter-
face for presentation to users, but which is controlled by
a rigorous process model. A prototype tool has been
developed, and tried on portions of European business
processes, and will be developed further as part of the
PROCESS3 project.

6. Conclusions

We believe that being able to map from one paradigm
to the other gives a significant advantage to the process
modeller. For example, it gives us a mechanism to test
the logic of our RADs, and it gives us an alternative and
accessible way to present CSP models to process users.

By combining notations, such that we can have
mappings between notations like CSP and RADs we
are much more likely to be able to gain greater insight
about the nature of the process under study, and to
narrow the gap between the business process and the
IT which supports it. This paper supports this combina-
tion of paradigms by giving a mechanism for mapping
RADs to CSP, and showing how this can be used for
examples of process models.

We suggest that an effective modelling method is to
use established user-facing models (in this case RADs)
for process elicitation, and presentation, and to map
these models to executable notations for more rigorous
process experimentation. The work presented here pro-
vides a first step in this direction.

References

[l] A.M. Ould and C. Roberts, Modelling iteration in the software

process. Proc. 3rd Int. Soft. Process Workshop. Breckenridge,
Colorado, USA. 17-19 November 1986. IEEE Computer Society

Press.

3 http://dsse.ecs.soton.ac.uk/-ga/process.html.

124 G. Abeysinghe, K. Phalpllnformation and Software Technology 39 (1997) 107-124

[2] A.M. Ould, Business Processes Modelling and Analysis for

Re-engineering and Improvement, John Wiley, 1995.

[3] C. Roberts, Modelling and Co-ordinating Change in Business

Processes, 1993. Process Modelling Workshop for the BCS

Bristol Branch, Bristol University, Co-Ordination Systems

Limited.

[4] A.M. Ould, An Introduction to Process Modelling using RADs,

illustrated by reference to the case study, 1992. IOPTCLUB

Practical Process Modelling Mountbatten Hotel, Monmouth

Street, Covent Garden, London.

[5] Co-Ordination (1994). RADitor version 1.5: Users Manual,

Co-Ordination Systems.

[6] C.A.R. Hoare, Communicating Sequential Processes, Prentice-

Hall, 1985.

[7] P. Henderson, The CSP stepper in enact - an executable

specification, 1992, available as an ftp source from ftp.ecs.soton.

ac.uk in pub/peter/various/csp.ps.

[8] P. Henderson, Object-Oriented Specification and Design with

C + +, McGraw-Hill, 1993.

[9] D.J. Hatley and IA. Pirbhai, Strategies for Real-Time System

Specification. Dorset House Publishing, New York.

[lo] D. Hare], On visual formalisms. Comm. ACM, 31 (1988) 514.

[11] B. Kramer, et al. Petri-net based models of software engineer-

ing processes. Proc. 23rd Annual Hawaii Int. Conf. on System

Sciences, Hawaii.

[12] D. Miers, Use of tools and technology within a BPR initiative,

in Business Process Re-engineering: Myth and Reality, 1994,

Kogan Page.

[13] M.G. Hinchey and S.A. Jarvis, Concurrent Systems: Formal
Development in CSP, McGraw-Hill, 1995.

