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Abstract—Resting-State fMRI (RS-fMRI) is a brain imaging
technique useful for exploring functional connectivity. A major
point of interest in RS-fMRI analysis is to isolate connectivity
patterns characterising disorders such as for instance ADHD.
Such characterisation is usually performed in two steps: first,
all connectivity patterns in the data are extracted by means
of Independent Component Analysis (ICA); second, standard
statistical tests are performed over the extracted patterns to find
differences between control and clinical groups. In this work we
introduce a novel, single-step, approach for this problem termed
Spatial Discriminant ICA. The algorithm can efficiently isolate
networks of functional connectivity characterising a clinical group
by combining ICA and a new variant of the Fisher’s Linear
Discriminant also introduced in this work. As the characterisation
is carried out in a single step, it potentially provides for a richer
characterisation of inter-class differences. The algorithm is tested
using synthetic and real fMRI data, showing promising results
in both experiments.

I. INTRODUCTION

Resting-State fMRI (RS-fMRI) [1] is a technique exploring
functional connectivity in the brain. In contrast to classical
fMRI paradigms, which are task-driven, resting-state studies
are based on BOLD responses associated with background
brain activity in subjects at rest [1]. Recently, RS-fMRI
analyses successfully enabled to correlate activation patterns
in BOLD responses with disorders like schizophrenia [2] or
ADHD [3].

Resting-State responses are often represented as linear
combinations of fixed spatial patterns in the 3-dimensional
brain with time-dependent coefficients [4]. These spatial pat-
terns are termed resting-state networks (RSN) [1] and sum-
marise functional connectivity between brain areas showing
simultaneous activity during rest. Connectivity patterns are
not localised in any particular region of the brain, and thus
analyses are commonly performed over the whole brain. Thus,
samples in the analysis present a large dimensionality (∼ 105

dimensions using voxels of 4 mm3).

RSNs are known to be sparse on the MRI space show-
ing super-Gaussian shapes [4]. Thus, Independent Component
Analysis (ICA) can be used for extracting the RSNs from the
BOLD signal [5]. The networks can be studied on its own or
can be rather used to extract the corresponding linear time-
dependent coefficients (or time-courses). The time-courses
are computed using, for instance, a General Linear Model

[6] fitting the linear coefficients of the RSNs that optimally
reconstruct the original fMRI signal [7].

In fMRI the spatial patterns (rather than their associated
time-courses) are considered independent [8]. Consistently,
Spatial-ICA, an architecture of ICA considering solutions with
the same dimension than the samples, is used instead of the
standard ICA architecture [8]. The solutions of Spatial-ICA
are linear combinations of the fMRI volumes in the signal,
and thus preserve the spatial information (i.e. localisation of
each voxel within the brain) of the data. Thus, solutions can
be clinically interpreted.

To characterise the differences between two populations of
subjects, some inference procedure has to be carried over the
RSNs, that are actually common to all the subjects. Several ap-
proaches have been proposed in the literature in this direction.
Most of them (e.g. [3], [4]) consist on first extracting the RSNs
and then performing inference over time-courses associated to
each network and group of subjects. Other approaches perform
the inference without explicitly computing the time-courses
(e.g. [9], [10]) but they still require to extract the RSNs as a
first step previous to further statistical inference.

The goal of this work is to design an efficient algorithm for
the identification of spatial patterns characterising differences
between two groups (typically a clinical population and a
control group) in RS-fMRI. Remarkably, and in contrast with
previous approaches, the RSNs are not necessary to perform
the inference, potentially presenting two main advantages in
comparison with the current state of the art methods. First,
our approach avoids unnecessary computation steps by directly
extracting important (i.e. discriminating) patterns in the data.
Second, as the solutions are not constrained to be RSNs or
variations of RSNs, they are potentially more accurate in
representing differences between the two classes.

Towards this goal, we developed a supervised version of
ICA, termed Spatial Discriminant ICA, maximising both inde-
pendence and discriminating power of the solutions. A similar
approach named Discriminant-ICA has been proposed in [11]
in the context of feature extraction combining both, ICA and
the Fisher’s (Linear) Discriminant Analysis (FDA) objective
functions. Discriminant-ICA successfully extracts a (small) set
of mutually independent features from a dataset maximising
the linear separation of the classes in the data. Nevertheless,
such approach is not applicable in fMRI, since Spatial-ICA and
FDA architectures are not compatible with each other. Indeed,
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Spatial-ICA solutions are linear combinations of the samples
(i.e. volumes) [5] while FDA solutions are linear combinations
of the original features in the data (i.e. voxels) [12].

In this work, we first introduce Spatial-FLD, a variation
of the FLD compatible with the architecture of Spatial-ICA.
Spatial-FLD evaluates the discriminant power of a candidate
component by measuring the linear separability, as given by
the FLD, of the points of the associated time-courses belonging
to each class. Then, we combine Spatial-FLD and Spatial-ICA
to formulate Spatial Discriminant ICA.

II. THE METHOD

A. Spatial-ICA

Consider the set of fMRI volumes x ∈ Xj representing
the different time-points of a recording of the subject j. The
aggregation of all volumes in a multi-subject experiment is
denoted by X ≡ ∪jXj . A standard procedure in Spatial-
ICA is to first reduce the number of elements on X using
Principal Component Analysis (PCA) in order to decrease the
computational complexity of the algorithm.

PCA reduces X to a smaller representative set Z , preserv-
ing the spatial information of the original samples x ∈ X (i.e.
the voxels if the instances in Z can still be directly mapped
into brain areas). This smaller set is used to span the search
space for the Independent Components ξ:

ξ =
∑
j

wjzj , zj ∈ Z (1)

where wj are the coefficients of ξ in the basis defined by Z .
The vectors w are often used to characterise the ICs ξ.

A common approach [8] to find the components is to
maximise the negentropy of the voxel distribution in the target
IC ξ. The procedure is repeated several times to find several
components, enforcing orthogonality between the weight vec-
tors w that characterise each solution in order to guarantee
that each component is extracted only once [5]. If the ICs
are non-Gaussian, this procedure guarantees that the extracted
components are maximally independent to each other [5].

The negentropy J(ξ) of the candidates is estimated by
comparing the approximate entropy of the distribution of ξ
with the entropy associated with a Gaussian distribution with
same mean and variance than ξ. Thus, it is convenient to keep
a constant variance in the search space of the algorithm. As all
the samples in Z are whitened after the PCA, this constrain
is imposed by enforcing ‖w‖2 = 1 during the optimisation
process. Further details on Spatial-ICA can be found in [5].

B. Spatial-FLD

In this work we introduce Spatial-FLD, a simple variant
of the FLD adapted to be compatible with the architecture of
Spatial-ICA. Spatial-FLD can be presented as a two stages
measure. In the first stage, a new representation of the fMRI
data is constructed by computing an estimation of the time-
courses of the component ξ. In the second stage, such rep-
resentation is fed into a classical FLD to evaluate the linear
separation of the classes under the considered component.

In the literature, the time-courses are computed after ex-
tracting all the RSNs. In the current approach, we estimate
them for a single candidate component by assuming that
the whole set of RSNs is orthogonal. This orthogonality
assumption can be heuristically justified by inspecting the
RSNs extracted by Biswal [1], where can be observed that the
expected cross scalar product between any two of the RSNs is
less than 0.05 times the norm of the components.

Under the hypothesis that the RSNs are orthogonal, the
direct projection of one component ξ over the fMRI signal,
assumed to be constructed as a linear combination of RSNs,
directly yields the linear coefficients of such component in the
data. Thus, if the time-course associated to the expression of a
given RSN in the data maximises the linear separation between
the classes, the Spatial-FLD will show a maximum in the linear
separation of the data when the considered component equals
such RSN.

In more formal terms, the data points considered by the
FLD for the subject i are expressed as the projections pj(w) of
the volumes xj ∈ Xi onto the considered component ξ. Thus,
the FLD considers as samples each of the linear coefficients
associated with each of the volumes in each of the recordings.

pj(w) ≡ 〈xj , ξ〉, xj ∈ Xi, ∀Xi ∈ X (2)

The labels of each sample x ∈ Xi are chosen according to
the label of its subject i (i.e. all the time-points of the volumes
of a control subject are considered as control samples).

By using Equation (1), we can rewrite the definition in
Equation (2) in a more convenient way:

pi(w) =
∑
j

wj〈xi, zj〉 =
∑
j

wjQij

where, in the last step, we have defined the Q-matrix
Qij = 〈xi, zj〉. The Q-matrix can be precomputed to avoid the
repetition of the computationally expensive projections 〈xi, zj〉
(note that each of the instances z and x have the dimension
of an fMRI volume).

The classical FLD formulation is optimal if projections of
samples of different classes onto the discriminant subspace
are normally distributed [6]. The normality assumption is
reasonable over the time-course approximations p as they
are computed as a projection onto a large number of voxels
that show a certain degree of statistical independence on an
area by area basis. Thus, the samples p approximately verify
the central-limit theorem [6]. However, we cannot expect the
differences between classes to be exclusively reflected in the
mean of these time-courses, but also in the variance of such
distributions (i.e. in a quadratic term) [4]. To take this factor
into account, instead of considering scalar samples p in the
discriminant we consider vector samples ηi containing both,
linear and quadratic terms of the projections:

ηi(w) ≡
(
pi
p2i

)
(3)
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Following the Rayleigh ration used in a classical two-
class FLD (the extension to a multivariate discriminant is
straightforward) we simply define the Spatial-FLD as:

Φ(w) ≡ |µ1 − µ2|2

σ2
1 + σ2

2

(4)

where µc is the mean of the vectors η on class (c) and σc
represents the intraclass variance.

µc ≡
1

Mc

∑
i∈Dc

ηi, σc ≡
1

Mc

∑
i∈Dc

‖µc − ηi‖2

In this last equation, Dc represents the set of samples and Mc

the number of volumes belonging to class c.

Note that the only free parameters to be optimised in
the Spatial-FLD are the components of w. This restricts the
search space of the Spatial-FLD to the subspace spanned by
Z , which is computed using unsupervised methods. This alle-
viates any potential overfitting issues, as PCA only preserves
few variance-maximising components of the space, therefore
filtering out noise such as inter-subject variability.

C. Spatial Discriminant ICA

Lastly, we formulate Spatial Discriminant ICA as a joint
convex optimisation of both the ICA objective function J(y)
(see [5]) and the Spatial-FLD:

J (w) = κΦ(w) + (1− κ) J(ξ(w)) (5)

where 0 ≤ κ ≤ 1 is a weighting factor modulating the
relative importance of each term. This dual process contributes
to alleviate possible overfitting issues of the Spatial-FLD by
adding an unsupervised component to the objective function.

The algorithm operates using standard gradient ascent with
the following restrictions over the weight vector w: it is forced
to be unitary (i.e. w ← w/‖w‖2) and orthogonal to the
weight vectors characterising any previously extracted com-
ponent. This last condition is imposed using Gram-Schmidt
orthogonalisation [5].

Code for Spatial Discriminant ICA, including
all libraries necessary for the preprocessing and
computation of the Q-matrix, is freely available in
https://www.github.com/qtabs/sdica/ under the MIT license.

III. EXPERIMENTS AND RESULTS

A. Experimental sets

1) Synthetic data: We tested the algorithm using a two-
class synthetic dataset designed to satisfy our assumptions
(i.e. BOLD signal constructed as a linear combination of
quasi-orthogonal RSNs and Gaussian distribution of the time
courses). The objective was to empirically verify that the
algorithm was able to isolate hidden discriminant RSNs in the
data. We used the RSN library by Biswal et al. [1], containing
20 common RSNs, to generate the dataset. The RSN sampled
differently for each of the two classes (or discriminant-RSN)

was chosen randomly in each run. Parameters for the time-
course Gaussian distributions of all RSNs were chosen to be
similar for all subjects except for the one associated with
the discriminant-RSN, showing different variances for subjects
belonging to different classes.

The resulting dataset was further modified by adding white
noise of different moderate intensities (with ratios signal to
noise between 0.001 and 0.1) and an extreme-noise intensity
(with a ratio of 1) in order to evaluate the robustness of
the algorithm. Additional tests were performed with two and
three discriminant-RSNs in order to evaluate the capacity
of the algorithm for isolating several (rather than only one)
components. Additionally, we re-scaled the datasets in different
factors to evaluate the efficiency of the algorithm. Specifically,
we run experiments considering datasets with 103−105 dimen-
sions and 100−2000 volumes.

2) Real data: We further tested the algorithm using real
fMRI data with a balanced version of the Pekin University
subset of the ADHD2001. In order to reduce the problem to a
binary classification scenario, we collapsed the three classes of
ADHD disorders (combined, inattentive and hyperactive) into
a single class. The classes in the dataset were then balanced
by removing 38 randomly chosen control subjects. This yields
to a final dataset of 78 vs 78 subjects. Then we applied a
Spatial-PCA independently over the recordings of each subject
in order to reduce the size of the data and to filter out noise.
This reduced the data of each subject to 61 volumes, resulting
in a final 156× 61 volumes dataset X .

To quantitatively assess the information contained in the
solutions extracted by the algorithm we used the components
to perform a classification task over the two classes in the data.
Following that purpose, we used our algorithm to extract 20
components. The projectors associated with those components
ηs (see Equation (3)) were then used as inputs of a linear SVM.
Note that the purpose of this approach is simply to devise a
complementary test of the reliability of the extracted compo-
nents. Supervised classification is not a primary objective of
our algorithm. Thus, we selected a simple yet robust linear
classifier.

Performance was computed using a 10-Fold cross-
validation strategy over the whole process (i.e. the extraction
of the components and the training of the SVM) across the
156×61 volumes. Predictions over the subjects can be obtained
using a majority-vote strategy over the predictions of the
volumes. The aim of this study, however, is to assess the class-
specific information contained in the components extracted
with our algorithm and therefore subject classification was not
attempted.

The experimentation was carried out using different con-
figurations to measure the impact of the different parameters
of the algorithm in the information contained in the solutions.
Specifically, we vary the relative weight of the two parts of
the algorithm κ and the size of the reduced set Z (i.e. the
number of degrees of freedom during the search). To compare

1The freely available dataset, license and documentation can be found
in http://fcon 1000.projects.nitrc.org/indi/adhd200/#beijing. The dataset was
fully preprocessed by The Neuro Bureau, The ADHD-200 consortium, and
the Virginia Tech’s ARC. Details in the preprocessed are published in
http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
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our method with other ICA-driven approaches we additionally
performed a plain Spatial-ICA running the algorithm with
κ = 0 (i.e. removing all contributions of the Spatial-FLD to
the objective function).

B. Results

1) Synthetic data: Synthetic data yield very satisfactory
results. The algorithm was able to correctly find the dis-
criminant RSNs for all noise conditions with one and two
discriminant RSNs. With regards to the three discriminant
RSNs experiment, the algorithm was able to find the first two
networks for all levels of noise, but it failed on revealing
the third one in the dataset with the extreme noise level.
Correlation coefficients between the extracted and the original
RSNs were > 0.95 for the moderate noise intensities and
oscillated between 0.6 and 0.8 for the extreme noise condition.

Moreover, the algorithm found the solutions efficiently.
Experiments performed with different-sized datasets showed
that the time required for each iteration of the gradient ascent
scaled linearly with both, the dimension and the number of
instances of the dataset.

2) Real data: Results for the real data are summarised in
Figure 1. Black triangles denote the accuracy obtained using
the classical Spatial-ICA based approach (i.e. κ = 0) for fea-
ture extraction with a linear SVM classifier. Those accuracies
are used as a comparison baseline here. The performance in
this baseline is not meant to reflect the accuracy that can be
achieved using state of the art methods, but the information
contained in the networks extracted using Spatial-ICA. Further
process applied after the network extraction often used in state
of the art works on RS-fMRI classification [4] can notably
improve these results. However, we stress that such procedures
can also be applied on the top of our solutions. Nevertheless,
as indicated before, the target of this experiment is not to test
the potential of the algorithm for classification tasks, but to
quantitatively assess the value of the information contained in
the solutions provided by the algorithm.

Fig. 1. 10-fold-cross-validation performances for different values of κ and
degrees of freedom of the algorithm. Error bars are MSE.

The blue shapes correspond to the results of the Spatial
Discriminant ICA for different parameter values, showing
improved performance with respect to the baseline for runs
with 50 (t-test, p < 0.02) and 100−1000 (t-test, p < 0.00001)

degrees of freedom (dof, i.e. the number of instances in Z ,
see 1) and for all κ > 0.2. With 10 dof, the solutions found
by the algorithm are equivalent representations of Z , and thus
solutions for any κ contain the same information. Solutions
found for the largest subspace (2000 dof) seem to overfit the
data providing poorer results.

IV. CONCLUSIONS

In this work we have introduced a novel method termed
Spatial Discriminant ICA. This technique combines Indepen-
dent Component Analysis and a spatial variant of the Fisher’s
Linear Discriminant in order to identify new spatial patterns
characterising differences between two groups of recordings
(typically, a set of patients and a control group) without
previously extracting the RSNs characterising the dataset.
To our knowledge, this has not been addressed by previous
approaches.

Experiments on synthetic and real data show that the
algorithm potentially presents a strong capacity to isolate dis-
criminant spatial patterns hidden in RS-fMRI data. Moreover,
we found that the algorithm scales linearly in time with the
dimension and the number of volumes of the data.

In future work, we will extend these results analysing the
extracted spatial patterns found by the algorithm from a clinical
point of view, comparing them to with the classical RSNs and
the standard solutions extracted with Spatial-ICA.
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