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Introduction

The life sciences in general, and neuro-
sciences in particular, produce data sets 
of ever-increasing size and complexi-
ty. Simultaneous recordings from tens to 
hundreds of neurons using optical imag-
ing techniques or bunches of tetrodes are 
now becoming routine. Likewise, in non-
invasive neuroimaging approaches such 
as functional magnetic resonance imaging 
(fMRI), the activity of up to tens of thou-
sands of units may be obtained as a func-
tion of time. In statistical terms, all these 
data sets comprise examples of multivar-
iate time series (. Fig. 1) where a vec-
tor (or a matrix preserving spatial neigh-
borhoods) of activity values is observed 
as a function of time. More and more of-
ten several of these techniques are com-
bined, like fMRI and electroencephalog-
raphy (EEG), yielding data sets which are 
multimodal in addition to being multivar-
iate. Generally, these multivariate neural 
recordings are also not made in isolation, 
but are to be related to a wealth of simulta-
neously obtained behavioral, genetic, mo-
lecular, or other information.

These often huge and complex data 
sets pose tough challenges for data anal-
ysis and statistical inference, by which we 
mean here the methods of extracting in-
teresting information from the multivar-
iate measurements and assigning proba-
bilities to our observations (thus infer-
ring properties of the population from 
a sample). Of course, more “tradition-
al” approaches, such as considering stim-
ulus-related firing rate changes of single 

units, or computing (pairwise) cross-cor-
relations between recorded units, will still 
work. From this perspective the advanc-
es in neural recording and imaging tech-
niques are basically just means to gener-
ate more data in shorter periods of time, 
which are then analyzed like traditional 
recordings from just one or a few units. 
However, the simultaneous measurement 
of tens to thousands of neural elements 
offers completely novel and exciting op-

portunities which may require more ad-
vanced mathematical techniques for their 
full exploitation, many of which may have 
already been around in statistics for quite 
some time. Here we will summarize some 
of these approaches with a focus on mul-
tiple single-unit recordings from behaving 
animals (although the methods discussed 
are much more widely applicable).
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Fig. 1 8 A multivariate (vector) time series obtained from multiple single-unit recordings (a) and its 
projection into a three-dimensional space (b) for purposes of data reduction and visualization (see al-
so . Fig. 2). (Part a, left, reproduced with kind permission from [9], copyright 2008 by the National 
Academy of Sciences of the USA)
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Visualizing multivariate data sets

Dimensionality reduction 
and neural state spaces

The challenge of analyzing multivariate 
neural time series may be seen as one of 
discovering spatio-temporal structure and 
patterns in the data, which are then to be 
interpreted in the cognitive or behavioral 
context imposed by the experimental set-
ting. A first step in this endeavor may be 

visualizing the multivariate activity to get 
a feel for how the neural dynamic evolves 
in time (. Fig. 1), or how it depends on 
different task or behavioral conditions 
(. Fig. 3). One common procedure here 
is to reduce the high dimensionality of the 
original data set to just two or three dimen-
sions ready for visualization by exploiting 
redundancies in the data (. Fig. 2). Oth-
er methods try to summarize the data in 
terms of prototypes or classes (e.g., dif-
ferent types of cluster analysis). The sta-

tistical literature abounds with different 
mathematical techniques to achieve these 
goals (e.g., [5, 8]), some dating back more 
than a 100 years. . Fig. 2 illustrates some 
of the most prominent of these techniques 
which have been used to visualize multi-
ple single-unit recordings, and their prin-
ciples of operation: Probably the most 
commonly used method is principal com-
ponent analysis (PCA, . Fig. 2a) which is 
a linear technique for projecting the data 
into a lower-dimensional space that con-
serves most of the original data variance. 
More precisely, PCA works by rotating the 
axes of the original space in such a way 
that they: (a) align with the directions of 
highest data variance in the original space, 
and (b) are orthogonal to each other, i.e., 
uncorrelated if the mean of each variable 
were subtracted off beforehand, such that 
each rotated dimension reflects a ‘novel 
aspect’ of the data roughly ‘independent’ 
of the others. The hope is that only a few 
dimensions may explain most of the vari-
ation in the data, and hence dimensions 
which capture only little data scatter can 
be discarded without much loss of infor-
mation, as illustrated in . Fig. 2a. A re-
lated technique that has been particular-
ly popular in psychology for a long time 
is factor analysis (FA). At first glance FA 
is similar to, and therefore often confused 
with, PCA in the sense that it tries to ac-
count for the data by a linear combination 
of a few uncorrelated factors by exploiting 
redundancies. However, there is a crucial 
and important difference: While PCA tries 
to align its dimensions with directions of 
maximum variance taking the data as they 
are, FA includes an explicit noise model 
(i.e., the observed data are assumed to re-
sult from a set of uncorrelated latent fac-
tors plus noise), and tries to find dimen-
sions such that they capture most of the 
correlations within the set of original vari-
ables. In consequence, the solutions found 
by PCA and FA can be very different (see 
[15] for a nice example). Both PCA and FA 
have been used to represent multiple sin-
gle-unit recordings in just a few dimen-
sions (e.g., [10, 15]).

A quite different approach to dimen-
sionality reduction is a set of related tech-
niques called multi-dimensional scaling 
(MDS). These techniques aim to project 
the data into a much lower-dimension-
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Fig. 2 8 Methods for dimensionality reduction. a Principal component (PC) analysis rotates axes of the 
original space such that they align with directions in the data cloud along which the variance is larg-
est, and such that they are orthogonal to each other (that is, as illustrated, the first PC captures most 
of the data variance, the second PC captures the second largest proportion of data variance spread 
perpendicularly to the first PC, and so on). The hope is that just a few dimensions suffice to represent 
most of the variation in the data. For instance, in the example shown, PC2 may be dropped as data 
points spread out mainly along PC1. b Multidimensional scaling directly attempts to find a lower di-
mensional embedding of the data that preserves distances (indicated by the connecting lines) in the 
original space to the largest degree possible. c Fisher’s discriminant analysis (FDA) finds a set of new 
axes (also called canonical variates) which bring out differences between predefined groups (red and 
blue colored dots) most clearly, i.e., along which groups can be most clearly differentiated. For a total 
of g groups, a maximum of g-1 such axes will result, which, however, are not necessarily orthogonal to 
each other. Points in this example were drawn from two-variate Gaussians. The distribution graphs in-
dicate that the two classes of points largely overlap along the original x- and y-axis, but are quite well 
separated along the best discriminating direction according to the FDA criterion
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al space while preserving the distances or 
dissimilarities between the original data 
points (or just their ordinal relationships 
in the case of non-metric MDS) to the 
highest degree possible (. Fig. 2b). This 
should work well if the data mostly lie in 
an approximately linear subspace or—in 
the case of extensions like Isomap (see be-
low)—are confined to some lower-dimen-
sional manifold. With regards to the visu-
alization of neural activity flows, this set 
of techniques has a number of distinct ad-
vantages as compared to PCA: Distances 
between points in PCA space can be highly 
distorted as the data are projected onto the 
few most-variance-capturing dimensions, 
ignoring vector components perpendicu-
lar to these directions. Hence with PCA it 
is not so clear how geometric structures in 
the original space relate to a reduced PC 
space, while MDS preserves much more 
of the original geometry of the data cloud 
by matching original distances as close-
ly as possible. Moreover, PCA may give 
rise to somewhat ‘awkward’ representa-
tions if the data variance spreads very un-
evenly among axes, while with MDS each 
new dimension is treated ‘equal’ in a sense. 
This comes at the price that MDS is an it-
erative optimization technique with po-
tentially high memory and computation 
time requirements, and where only sub-
optimal (‘locally optimal’) solutions may 
be found, unlike PCA where the new set 
of axes can be computed fast and explic-
itly by solving a simple eigenvalue prob-
lem (note, however, that there is a vari-
ant of metric MDS, called ‘classical MDS’, 
which gives solutions equivalent to PCA 
if distances are Euclidean). As indicated 
above, there are also ‘non-metric’ versions 
of MDS which aim to preserve only the 
rank order of the original dissimilarities 
in the lower-dimensional space. Recently, 
an MDS-based approach called ‘Isomap’ 
[14] was developed to recover the puta-
tive lower-dimensional (nonlinear) man-
ifold on which the data are lying by de-
fining distances among points as those on 
the manifold (geodesic/shortest-path dis-
tances). Locally-linear embedding (LLE) 
[12] is another recently proposed dimen-
sionality reduction technique following a 
similar objective.

Like PCA and FA, MDS [9], Isomap [3], 
and LLE [2] have all been applied to visu-

alize features of neural activity. . Fig. 3 
gives an example from our own work 
where simultaneous recordings from 10–
40 neurons (which define what we refer to 
as the multiple single-unit activity, MSUA, 
space) have been embedded in a three-di-
mensional space by metric MDS, such 
that each point in this space represents 
the simultaneous activity of a population 
(the population state) of a set of recorded 
neurons. These recordings were obtained 
while rats were situated in the working 
memory and decision-making task il-
lustrated in . Fig. 3a: During a training 
phase rats had access to four out of eight 
baited arms in a radial maze, while the re-
maining four randomly chosen arms were 
blocked by physical barriers. After retriev-
ing food from all four open arms, the rat 
was then confined to the last arm visited 
for 1 min or longer (the delay phase), after 
which all barriers were removed such that 
the rat could now access the four arms 
still baited in the test phase. Hence, to ef-
ficiently solve this task, the animal has to 
maintain during the delay trial-unique in-
formation about the arms already visited 
or still to visit, and has to utilize this infor-
mation in the test phase at each arm en-
try to make a choice about whether to en-
ter the arm or not. Optimal performance 
on this task is highly dependent on vari-
ous subdivisions of the prefrontal cortex. 
In terms of cognitive demands, this task 
may be divided into various periods asso-
ciated with ‘choice points’ (. Fig. 3a) at 
which the animals decide whether to en-
ter an arm or not, reward phases where 
the animals retrieve a food pellet, base-
line training and test phases where the an-
imals move from one arm to another, and 
the delay period. Since memory require-
ments are different during training and 
test choices and rewards, one may further-
more speculate that the neural dynamics 
evolve differently for choices and rewards 
during training and test. To illustrate the 
relationship of neural population activi-
ty as represented in MDS space to these 
different cognitively defined task phases, 
points in MDS space were color-coded ac-
cording to the task period where they stem 
from (. Fig. 3b). As shown in . Fig. 3b, 
the different task phases defined above 
seem to segregate in MDS space, i.e., dif-
ferent task phases are associated with dif-
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ferent patterns of population activity and 
hence formed different separated clusters 
in MDS space. This apparent organization 
of population activity in MDS space, how-
ever, breaks down as the animals start to 
commit a lot of errors defined by revisits 
to previously exploited arms (. Fig. 3c). 
Thus, the segregation of population activ-
ity according to task phases in MDS space 
appears to be functionally relevant to the 
performance of the task.

. Fig. 2c exemplifies another tech-
nique for the low-dimensional represen-
tation of population activity from MSU 
recordings which can be used if the fo-
cus is on visualization of the differences 
between clouds of points associated with 
well-defined task events. Fisher’s discrim-
inant analysis (FDA) is similar in spirit to 
PCA, except that it rotates axes such that 
differences between (the means of) sets 
of points belonging to different classes are 
maximized, while at the same time intra-
class variances are minimized (. Fig. 2c, 
see also . Fig. 5b). In other words, FDA 
like PCA is a linear transformation of the 
original data space, but it tries to find di-
rections in the original space along which 
two or more a-priori-defined classes are 

optimally separated instead of maximiz-
ing the variance along these directions. 
In . Fig. 5b this approach has been used 
to visualize the differentiation in terms 
of neural activity between two behavior-
al rules and two different spatial cues in a 
rule-switching paradigm explained in fur-
ther detail below.

Statistical inference about 
structure in neural state spaces

The techniques summarized above were 
mainly introduced as tools for data visu-
alization or reduction, although there are 
also some more genuine data analysis ap-
plications. But how do we know wheth-
er, for instance, the segregation of popu-
lation activity in MDS space as shown in 
. Fig. 3b, or other features of the visual-
ized population dynamics, are statistical-
ly meaningful, i.e., represent significant, 
beyond chance aspects of population dy-
namics? Traditional statistical theory of-
fers exact and asymptotic tests, the latter 
usually founded on the central limit the-
orem, i.e., the fact that sums of random 
variables converge to the normal distribu-
tion as the number of observations (the 

sample size) goes to infinity. Many of the 
traditional statistical tests assume that ob-
servations under the null hypothesis are 
identically (according to the same dis-
tribution) and independently distribut-
ed. However, in all of the examples with 
which we started off we are dealing with 
time series generated by biological (or bio-
physical) systems which by their very na-
ture will exhibit auto-correlations, i.e., ob-
servations which were taken close in time 
tend to be much more similar than obser-
vations taken at very different time points, 
thus violating the independence assump-
tion. Asymptotic statistical tests may still 
be available provided the time series satis-
fies certain conditions, but when one has 
very little knowledge about the true dis-
tribution of the test statistic in question, 
there are also powerful alternatives called 
the parametric and nonparametric boot-
strap. In general, these are relatively easy 
to use and universally applicable, but also 
computationally much more intense.

. Fig. 4 illustrates how it works for the 
case of task phase segregation discussed 
above (see . Fig. 3). To test whether the 
observed segregation in the MSUA space 
is statistically meaningful, we defined a 
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Fig. 3 8 Population encoding of different cognitively defined task phases in a working memory and decision making task. a 
Illustration of the delayed win-shift radial arm maze where different task epochs (going in hand with different cognitive pro-
cessing demands) are color-coded according to the legend. b,c Multiple single-unit activity space representation achieved by 
means of multidimensional scaling (see . Fig. 2b) for an animal performing with high behavioral accuracy (b) and when the 
same animal committed multiple errors (wrong arm entries) (c). Each color-coded dot represents the state of the recorded net-
work (i.e., the population vector of instantaneous firing rates) in a 200-ms bin at some point during the task. Points were col-
or-coded according to the task epochs defined in a. Population activity distinguished between task epochs when the animal 
performed well (b) but not during bad performance (c). (Reproduced with kind permission from [9], copyright 2008 by the 
National Academy of Sciences of the USA)
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linear separation error as follows: Given 
any two task epochs, a hyperplane opti-
mally separating these two epochs was 
fitted into the original (full-dimension-
al) MSUA space (. Fig. 4a), where ‘op-
timal’ in this case was defined accord-
ing to Fisher’s linear discriminant crite-
rion introduced above. Hence, the sep-
arating hyperplane lies perpendicular to 
the direction along which the data points 
are maximally separated and intersects it 
at a point determined from normal dis-
tribution assumptions (. Fig. 4a). There 
are other ways to define ‘optimality’ here, 
e.g., by fitting the hyperplane such that the 
margins to the data points closest to it are 
maximized (leading to maximum margin 
classifiers, a criterion employed in the so-
called support vector machines, SVM). Or 
of course one may seek nonlinear (e.g., 
quadratic) separating hyper-surfaces that 
optimally distinguish different classes of 
data points. This line of thoughts leads 
into the broad area of (supervised) clas-
sification techniques of which many (like 
the above mentioned SVM) have recent-
ly been employed for predicting a subject’s 
mental state or decision from BOLD sig-
nals obtained through fMRI (e.g., [6]). In 
the present case we are just using the lin-
ear classifier to define a test statistic that 
is sensitive to differences in MSUA space 
separation (i.e., we are not really interest-
ed in ‘optimal separation’ or prediction), 
and for this purpose many definitions 
may do. A linear classifier based on Fish-
er’s discriminant criterion has the partic-
ular advantages of being straightforward 
to compute, simple to understand, and re-
quires no user-dependent parameter set-
tings or tuning.

The specific test statistic was now de-
fined as the relative number of data points 
classified incorrectly by this approach, i.e., 
the proportion of data points falling on 
the wrong side of the separating hyper-
plane as defined above (. Fig. 4a). The 
distribution of this test statistic under the 
null hypothesis of no significant separa-
tion between two task epochs can now be 
obtained by bootstrapping from the data 
(i.e., the observed data are taken to define 
an empirical distribution function from 
which we resample in certain ways): In 
the simplest case, if the data were identi-
cally and independently distributed, one 

could just randomly reassign the original 
data points to the two classes considered 
(. Fig. 4a, right; maintaining their rela-
tive numbers) and recalculate the test sta-
tistic. However, since we are dealing with 
time series, clustering in MSUA space 
may also be induced simply by the tem-
poral relations among data points (rath-
er than their cognitive-class membership), 
and hence the bootstrap data sets should 
preserve the original auto-correlations to 
some degree, e.g., up to the length of the 
stretches of task epoch to be compared. 
This can be achieved by not just randomly 
and independently reassigning class labels 
to individual data points, but by permut-
ing whole blocks of temporally consecu-
tive class labels with block lengths on the 
order of the duration of the task epochs 
compared (. Fig. 4b). There are many 
variations on this scheme as well as more 
advanced bootstrapping methods which 

attempt to retain both the distribution of 
the original data points as well the pow-
er spectrum of the time series (and hence 
all auto-correlations up to the limits im-
posed by the finite length of the time se-
ries, or, equivalently, the slowest non-zero 
frequency represented in the power spec-
trum). In any case, one now generates N 
(say 1000) replicates (bootstrap data sets), 
and re-computes the test statistic for each 
one of them. Following conventional sta-
tistical logic, a simple nonparametric test 
will now denote the original result as be-
ing significant at the p=0.05 level if on-
ly 5% or less of the bootstrap separation 
errors rank lower than the one obtained 
empirically, i.e., for the original data set. 
In the present example, almost all pairs 
of cognitive epochs could indeed be sig-
nificantly separated (after correcting sig-
nificance levels for multiple testing us-
ing the so-called Holm-Bonferroni pro-
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Block Permutation Bootstraps

Error = 2/14 Error = 4/14

b

a

Fig. 4 8 Statistics and bootstrap methods for evaluating the significance of the observed task-epoch-
related clustering of population activity in . Fig. 3b. a Left For any pair of task epochs, a separation 
error (SE) can be defined as the proportion of points incorrectly assigned by a linear classifier. For this 
purpose, an optimally separating hyperplane (where ‘optimality’ can be defined in various ways, e.g., 
based on normal distribution assumptions) is fitted to the data (see . Fig. 2c). The relative number 
of data points falling on the wrong side of this hyperplane is an indication of how well two task ep-
ochs can be separated in terms of population activity. Right Naively, bootstrap data may now be de-
fined by randomly reassigning data points to the two task epochs (keeping their relative proportions; 
green circles indicate reassigned points). Repeating this procedure N times results in N bootstrap esti-
mates SE* of separation error under the null hypothesis (H0) that any clustering in MUSA space is pure-
ly due to chance, thus ‘bootstrapping’ the H0 distribution from the data. b However, complete random 
assignment does not account for the fact that almost any time series from a physical system will bear 
some autocorrelations. More strictly, one would like to test against the H0 that the observed clustering 
in MSUA space was not purely induced by the fact that consecutive values in a time series tend to be 
correlated and hence close in MSUA space. Thus, bootstrap data need to be devised that preserve au-
tocorrelations up to the length of a task epoch, and this may be achieved by scrambling whole blocks 
of temporally consecutive class labels that correspond to different epochs from the same task phase
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cedure), and furthermore there were sig-
nificant differences in task epoch segrega-
tion between trials on which either only 
few or many behavioral errors were com-
mitted [9].

Single trial analysis of 
neural dynamics

One big advantage of having simultane-
ous recordings from many neurons is that 
these may allow inferences from the data 
that are simply not possible with just a few 
recorded units, examples being the contri-
bution of higher order correlations among 

many units to neural coding [11], or the 
temporal dynamics of neural ensembles 
such as transitions among different en-
semble states [10]. Another real virtue is 
that single trial analyses become feasible 
since the statistical power and noise re-
duction usually gained by averaging across 
many trials can at least partly be offset by 
somehow combining the measurements 
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from the many simultaneously recorded 
neurons (the discriminative power of the 
recorded network as a whole, for instance, 
will usually be much larger than that of 
the best single unit; e.g., [4]). This makes 
it possible to address a whole set of new 
or long-standing questions which require 
single trial resolution, e.g., it may make it 
possible to dig deeper into the cognitive 
or behavioral basis of neural trial-to-trial 
variability (e.g., [15]).

In a recent study, we exploited this ad-
vantage to track the neural dynamics in 
rat prefrontal cortex accompanying the 
acquisition of a new behavioral rule on 
a trial-by-trial basis [4]. More specifical-
ly, the animals were first trained on a sim-
ple discrimination rule where they had to 
press a lever associated with a cue light 
(‘visual rule’). At some point suddenly 
and unknown to the animal (i.e., for the 
first time in the animal’s experimental life) 
reward contingencies were then changed 
to a new rule which demanded respons-
es always to a fixed side, i.e., always press-
ing the left or the right lever irrespective 
of the location of the cue light (. Fig. 5a). 
This type of rule switch was shown pre-
viously to depend on the integrity of the 
rat prefrontal cortex. Furthermore, these 
rules were selected such that a reasonable 
number of trials on the first rule plus ac-
quisition of the second rule could all be 
accomplished on one day, ensuring that 
the same population of neurons was mon-
itored throughout the rule switch. As ex-
emplified in . Fig. 5b, the two rules once 

acquired filled clearly distinct regions of 
MSUA space. The aspect of key interest in 
this study was, however, how the recorded 
network transitioned from one rule repre-
sentation to the other after the rule switch. 
In particular, we wondered whether there 
would be a gradual transition stretching 
out along the whole acquisition phase, or 
whether the transition would instead be 
sudden. Sudden transitions of behavior-
al performance during learning in many 
different classical and operant condition-
ing paradigms had been suggested recent-
ly by detailed statistical analysis of behav-
ioral learning curves in Randy Gallistel’s 
lab at Rutgers University, New Bruns-
wick. This stands in contrast to the popu-
lar view that most forms of animal learn-
ing are a relatively slow process in which 
links between stimuli, responses, and en-
vironmental feedback are incrementally 
strengthened as they become synaptical-
ly imprinted.

In accordance with the findings of the 
Gallistel group, we observed the presence 
of sudden change points in behavioral per-
formance, i.e., the transition from chance 
to good performance was not smooth, 
but often appeared to happen within just 
a few trials. To quantify the type of transi-
tion at the neural level, we computed for 
each trial the distance of the neural trajec-
tory to the two rule steady states shown in 
. Fig. 5b. The idea is that during a gradu-
al learning process the neural state should 
slowly move from one neural rule repre-
sentation to the other, i.e., the distance to 

the visual rule state should gradually in-
crease trial by trial while the one to the 
spatial rule state would gradually become 
smaller. Distance in neural space was de-
fined here in terms of the ‘Mahalanobis 
distance’ which one may think of as an 
Euclidean distance between group means 
normalized by the data scatter within the 
groups [in fact, the Mahalanobis distance 
is the Euclidean distance after all variables 
have been standardized (to have unit vari-
ance) and decorrelated]. Thus, in contrast 
to the Euclidean distance, the Mahalano-
bis distance takes the spatial spread of da-
ta points belonging to different classes in-
to account, thereby, in a sense, incorpo-
rating the statistical uncertainty about the 
precise location of the neural state (on top, 
rule steady states may be geometrically ex-
tended objects for purely systems-dynam-
ical reasons, in addition to the noise and 
empirical uncertainty about their loca-
tion). The directions that contribute most 
to the Mahalanobis distance are those 
where there is a large difference in means 
while the within-group variation along 
that direction is small. This is reminiscent 
of Fisher’s discriminant criterion intro-
duced further above, and indeed assign-
ing data points to classes according to Ma-
halanobis distances (with pooled covari-
ance matrix) is formally equivalent to lin-
ear discriminant analysis.

. Fig. 5c plots the trial-time-series of 
the difference S between the Mahalanobis 
distances D to the two rule steady states 
(i.e., Si=Di

visual-Di
spatial). As can be appreci-

Fig. 5 9 Single-trial analysis of transitions among neural rule-representations during learning. a The task design: Initial-
ly rats were given 20 trials of a previously-learned visual cue discrimination task, in which a press of the lever indicated by 
the cue light was rewarded. Subsequently, without any cue, the rule for reward was changed to a spatial rule in which on-
ly the left or only the right lever was rewarded, regardless of the cue light location. b Population activity differentiation be-
tween the two different behavioral rules (reddish and bluish colors) and two cue lights (lighter and darker colors) in a rule-shift 
task. In this case a two-dimensional representation that highlights differences between the groups corresponding to differ-
ent cues and rules was obtained by FDA (see . Fig. 2c). The group-enclosing lines are the convex hulls of each of the four 
sets of data points, i.e., mark the largest extent of data spread for each group. c Difference between the Mahalanobis distanc-
es of the current neural population state to the two rule steady states as a function of trial number (the visual and spatial rule 
steady states are indicated by dashed vertical lines). A hidden Markov model (HMM) identified two discrete neural states as in-
dicated by the color coding, with a rather sharp transition around trial 74 between these two states. d Conditional probabili-
ty of the final (spatial) rule state (as defined by the HMM) as a function of trial number. To measure the steepness of the tran-
sition, a logistic (sigmoid) function was fitted to this probability and the x-axis range (i.e., number of trials) corresponding to 
the 10%–90% y-axis coverage of this function was taken as a test statistic (Trange). e Another way to represent this time series 
is to cumulate the differences to the mean (see text) and plot as a function of trial number (black line). The cumulation reduc-
es the variability and furthermore change points (black dot) are easy to identify from this graph. The gray line shows the same 
for the behavioral performance curve (drawn to same scale), with the gray dot corresponding to the behavioral change point. 
f Across 11 out of the 13 data sets examined in this study there was a remarkably good temporal agreement between change 
points identified from the neural dynamics and those from the behavioral performance, with only two exceptions (marked by 
asterisks) where the neural time series showed only little variation (thus making CP location somewhat arbitrary) and/or high 
behavioral error scores. (Reproduced with kind permission from [4], copyright 2010 by Cell Press, Elsevier)
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ated from . Fig. 5c, there is not a gradual 
rise of this measure extending across the 
whole acquisition phase, but a rather steep 
increase within just a few trials around tri-
al 74. There are different ways to put this 
statement into more formal and statistical 
terms. One is based on the idea that there 
is indeed a (hidden) sequence of underly-
ing neural states generating the observed 
time series, i.e., at each trial i the neural 
system is assumed to be in some state K, 
and each state K could produce the ob-
served values S with some (conditional) 
probability distribution p(S|K). If the cur-
rent state Ki is assumed to depend only on 
the immediately preceding state Ki-1, this 
is called a (first-order) hidden Markov 
model (HMM). Hence, an HMM is spec-
ified by the matrix of transition probabili-
ties among all states K and the condition-
al probabilities p(S|K). It is usually fitted to 

the observed data by the Viterbi algorithm, 
and it has been used by several authors to 
identify state transitions in multiple sin-
gle-unit recordings (e.g., [7]). The color-
coding in . Fig. 5c was done according 
to the states identified this way, and hence 
changes in color identify change points in 
the neural dynamics as one moves along 
the sequence of trials. It turns out that the 
conditional probability of the final (spa-
tial rule) state p(Ki =’spatial rule’|Si) giv-
en the observed distances to the two rule 
steady states (. Fig. 5d) increases rapid-
ly within just a few trials for at least half 
of the 13 animals examined. Statistically 
this is confirmed by the fact that placing 
the putative change (transition) point ran-
domly along the time series yields signif-
icantly shallower slopes for the final-state 
probability. Thus, the change points iden-
tified through the HMM analysis are in-

deed unique and inconsistent with ran-
dom fluctuations elsewhere along the time 
series.

This conclusion is further corroborat-
ed by a statistical procedure called change 
point (CP) analysis: In CP analysis a test 
statistic is often based on summed (cu-
mulated) differences to the mean, i.e., the 
quantity

is plotted as a function of trial number 
as in . Fig. 5e. In this representation, 
change points appear as minima (or max-
ima) of the curve: For instance, as long as 
Si stays below its mean, the curve will con-
tinue to decrease, but will steadily rise as 
long as Si>•Si•, as shown. After detrend-
ing the original time series (removing slow 
consistent drift), this measure should fluc-
tuate around zero if there is no transition 
in the neural dynamic, while a clear min-
imum should be present in case Si hops 
from a lower to a higher level. Hence, one 
can take the strongest deflection of the 
curve from zero, 

as an indicator for the presence of change 
points. To evaluate the significance of the 
observed TCP and to provide confidence 
limits for the location of the change point 
(i.e., its temporal precision), phase-ran-
domized bootstraps can be used: These 
are bootstrap time series which retain 
both the distribution of the original val-
ues as well as—and importantly—the au-
tocorrelations within the original time se-
ries (and thus its power spectrum). Thus 
these bootstraps will contain all the same 
linear features and fluctuations as the orig-
inal time series, but should lack the con-
sistent change in mean that would define 
the sudden switch in the neural dynamic. 
In fact, for about half of the cases the origi-
nal TCP was significantly larger than those 
for the bootstrap time series, and more-
over the CP could be pinpointed to a nar-
row range of just about six trials with 95% 
confidence. Finally, we conclude by point-
ing out that the neural change points were 
in tight temporal agreement with change 

?

v1(t - T1)  v2(t - T2)

v1(t )

v2(t )

Fig. 6 8 Unfolding trajectories of neural ensemble activity via expansion 
of the MSUA space. The schema shows at the bottom two neural trajecto-
ries projected into a plane spanned by the instantaneous firing rates of two 
simultaneously recorded neurons, ν1(t), ν2(t). Since these trajectories may 
come from a true space of much higher dimensionality, but are forced in-
to the empirically accessed space of just two dimensions, they frequently in-
tersect with themselves and with each other. At each of these intersection 
points, the flow of the system (the change of activity in time) is not unique-
ly defined (as indicated by the arrows and question mark). Therefore, it is not 
possible to assess for instance a convergent flow of activity as indicative of 
an attractor state. However, by adding a third axis representing the prod-
uct of time-lagged versions of the two original variables, ν1(t-τ1) ν2(t-τ2), it is 
possible to fully disentangle the two trajectories. In this manner, dimensions 
missing from the original space may be substituted by new axes formed 
from the measured variables
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points identified in the behavioral perfor-
mance (. Fig. 5f). Hence, these trial-by-
trial statistical analyses suggest that learn-
ing in this rule-switching task happens 
rather suddenly, almost as if the animals 
had a moment of sudden insight, both at 
the neural and behavioral level.

In summary, multiple single-unit re-
cordings in conjunction with appropriate 
statistical tools can be exploited to tack-
le phenomena at the single-trial level that 
otherwise may have been buried in noise.

Outlook: reconstructing 
neural trajectories and 
the flow of activity

. Fig. 3b illustrated how neural popu-
lation activity vectors cluster in MSUA 
space during a cognitive task. However, 
in principle, of course there is much more 
information about the system dynam-
ics one could theoretically extract from 
these observations of ensemble activi-
ty. First, from a dynamical systems point 
of view it would also be very important 
to know how activity moves between dif-
ferent states, that is, one may want to il-
lustrate and examine the precise neural 
trajectories connecting different activity 
patterns. Mazor and Laurent [10] for in-
stance, using such an approach, were able 
to demonstrate that much more informa-
tion about a sensory (olfactory) stimulus 
is encoded in the transient neural dynam-
ic than in the stimulus-dependent steady 
states the system eventually approaches. 
More specifically, trajectories in the neural 
state space associated with different stim-
uli were much more separated (further 
apart) from each other during the tran-
sient response phase than the stimulus-
driven fixed points were towards which 
activity converged after 2–3 s of stimulus 
presentation.

Second, a frequent assumption in theo-
retical neuroscience is that computational 
operations in the nervous system are im-
plemented by moving between attractor 
states. These are stable configurations or 
patterns of neural activity towards which 
the neural dynamic converges in time, at 
which it tends to persist for a while, and 
which are resistant to (small) perturba-
tions. For instance, active stimulus or re-
sponse representations as observed dur-

ing working memory tasks or spatial rep-
resentations in the hippocampus have of-
ten been claimed to correspond to attract-
ing states of the system dynamics, while 
cognitive processes (such as the recall of a 
memory sequence) may unfold by travel-
ing between different states. Simultaneous 
recordings from many neurons in con-
junction with advanced statistical meth-
ods for reconstructing state spaces from 
these recordings may make it possible to 
visualize and extract such states. There is 
one conceptual problem that needs to be 
overcome here. Proving convergence in 
state space, as a defining condition of an 
attractor state, requires the neural dynam-
ics to be sufficiently ‘unfolded’ (. Fig. 6): 
Even with multiple implanted tetrodes the 
number of probed neurons is usually van-
ishingly small (at least in cortical areas) 
compared to the total number of neurons. 
Thus, neural trajectories get squeezed and 
projected into a space of much smaller di-
mensionality, the one experimentally ac-
cessible, and as a result may intermingle 
and mix in such a way that a consistent 
flow of activity in one or the other direc-
tion is no longer discernible (. Fig. 6). 
Hence, what may be a converging flow of 
activity in the true high-dimensional neu-
ral space may appear as a highly disor-
dered and distorted set of frequent direc-
tional changes in low-dimensional projec-
tions, preventing us from detecting attrac-
tors. A potential solution to this problem 
is expanding the original MSUA space to 
much higher dimensionality by forming 
new variables from the recorded quan-
tities (neural activity values) and adding 
them as further dimensions to the orig-
inal MSUA space (. Fig. 6). In a recent 
approach ([1], in press), we extended the 
MSUA space by including time-lagged 
versions νi(t-τ) of the original variables 
νi(t), as well as higher-order interaction 
terms such as, e.g., νi(t-τi)×νj(t-τj)2 in its 
construction. In this manner one may be 
able to ‘unfold’ the flow (the directions of 
neural activity changes) until cognitively 
relevant attractor states of the full system 
are completely resolved (. Fig. 6). A ca-
veat with these methods is that the recon-
structed spaces may become so extreme-
ly high-dimensional (e.g., several 1000 
dimensions) that special algorithms (so-
called kernel methods, e.g., [5]) are need-

ed to perform mathematical operations 
in these spaces. However, such approach-
es are firmly established in the areas of 
nonlinear dynamics (so-called embed-
ding theorems; [13]) and statistical learn-
ing theory, and they may ultimately offer a 
much more detailed view of the neural dy-
namics and hence the neural implemen-
tation of computational processes related 
to cognition.
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