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The responses of cortical neurons are often characterized by measuring their spectro-temporal receptive
fields (STRFs). The STRF of a cell can be thought of as a representation of its stimulus ‘preference’ but it is
also a filter or ‘kernel’ that represents the best linear prediction of the response of that cell to any stimulus.
A range of in vivo STRFs with varying properties have been reported in various species, although none in
humans. Using a computational model it has been shown that responses of ensembles of artificial STRFs,
derived from limited sets of formative stimuli, preserve information about utterance class and prosody as
well as the identity and sex of the speaker in a model speech classification system. In this work we help
to put this idea on a biologically plausible footing by developing a simple model thalamo-cortical system
built of conductance based neurons and synapses some of which exhibit spike-time-dependent plasticity.
We show that the neurons in such a model when exposed to formative stimuli develop STRFs with varying
uditory cortex
uditory pathways
ime factors
inearity
eurons

temporal properties exhibiting a range of heterotopic integration. These model neurons also, in common
with neurons measured in vivo, exhibit a wide range of non-linearities; this deviation from linearity can
be exposed by characterizing the difference between the measured response of each neuron to a stimulus,
and the response predicted by the STRF estimated for that neuron. The proposed model, with its simple
architecture, learning rule, and modest number of neurons (< 1000), is suitable for implementation in
neuromorphic analogue VLSI hardware and hence could form the basis of a developmental, real time,
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neuromorphic sound class

. Introduction

Since Hubel and Wiesel (1962) showed that, for neurons in visual
ortex, there were ‘preferred stimuli’ which evoked a more vigor-
us response than all other stimuli, it has become commonplace to
hink of discrete neural units as having stimulus preferences. The
uantification of this idea through the use of reverse, or triggered
orrelation (de Boer and Kuyper, 1968) has led to the concept of
he spatio-temporal receptive field or spectro-temporal receptive
elds (STRF) in visual neuroscience. For auditory stimuli the prin-
ipal is similar, but the representational dimensions are time and
requency. In the auditory system the term spectro-temporal recep-
ive field, also referred to as STRF, has been adopted. The STRF is the
inear filter, or kernel, that best explains or predicts the response of a

ell to any given stimulus. As the STRF is constructed on an assump-
ion of linearity, the extent to which it predicts the cells response
an be interpreted as a measure of how linear the cell is (Machens et
l., 2004). Cells with a range of non-linearities have been reported in
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ivo, e.g. Theunissen et al. (2000), Machens et al. (2004), and it has
een suggested that these non-linearities are important in inter-
reting the highly selective response of some neurons to specific
atural stimuli.

Although it is widely believed that auditory perception is based
n the responses of cortical neurons that are tuned to spectro-
emporal ‘features’ it is not clear how these features might come
n to existence. There is evidence that cortical responses develop to
eflect the nature of stimuli in the early post-natal period (Illing,
004; Zhang et al., 2001, 2002) and that this plasticity persists
eyond early development (Wang, 2004). It has been suggested
Coath and Denham, 2005; Coath et al., 2005) that the spectro-
emporal patterns found in a limited number of stimuli, which
eflect some putative early auditory environment, may bootstrap
he formation of these responses. Here we extend this idea to
emonstrate that unsupervised, correlation based learning, imple-
ented using conductance based synapses exhibiting spike timing
ependent plasticity (STDP), leads to responses similar to those
eported from measurements in vivo by characterizing the STRFs
n our model of auditory cortex. Also we show that the resulting
TRFs depend on the stimuli chosen to represent the formative
nvironment.

http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:mcoath@plymouth.ac.uk
dx.doi.org/10.1016/j.biosystems.2008.05.011
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Fig. 1. Summary of the sub-thalamic processing used in the model. The sound file
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cells involved. The model of synaptic depression (Denham, 2001) adopted is based
on a system containing three component subsystems (Ostergaard, 1990; Tsodyks
and Markram, 1997)(Fig. 2) representing:

• [-]the pool of available transmitter y,

Table 1
Time constants and conductances used in synapse models described in Eq. (1)

�r (ms) �d (ms) ḡ (S)

AAMPA 0.09E−3 1.50E−3 720.0E−12
GABA 0.01E−3 5.00E−3 40.0E−12
NMDA 3.00E−3 40.00E−3 1.2E−09
M. Coath et al. / BioS

If the response of a neuron is linear then convolution of the
TRF with the representation of the stimulus used to estimate the
TRF would exactly reproduce the observed response to that stim-
lus. Not only would it reproduce this response but, using the same
ethod, it would be possible to predict responses to other, novel

timuli. It has been shown, e.g. Machens et al. (2004), that some
ortical responses, or at least their gross features, can be predicted
n this way. However many cortical responses are highly non-linear
nd the estimated STRFs fail not only to predict cortical responses to
ovel stimuli, but fail to reproduce the responses used in their esti-
ation. In this work we investigate the linearity of the responses of

he neurons in the thalamo-cortical model by calculating the lin-
ar correlation between the response of the model cells and that
redicted by the STRF.

. Methods

.1. Sub-thalamic processing

The auditory system performs a spectral decomposition which can be modelled
y a finite number of band pass filters (Patterson et al., 1992), and many cells in
he auditory periphery of many different types exhibit well defined characteristic
requencies (Trussel, 2002). In addition there is a great deal of evidence that the
uditory pathway is arranged tonotopically and little evidence to support integration
cross frequency channels in sub-cortical areas (Trussel, 2002).

It is also well documented that the auditory system is sensitive to the temporal
tructure of the amplitude envelope, particularly rising, or onset transients. This has
een shown both in physiological and psychophysical measurements (e.g. Phillips
t al., 2002; Heil, 1997). This sensitivity increases as measurements are made at suc-
essively higher levels in the auditory pathway. Units that detect onsets are found
hroughout the auditory system: in the cochlear nucleus (Frisina et al., 1985; Rhode
nd Greenberg, 1994), inferior colliculus (Langner and Schreiner, 1988), thalamus
Rouiller et al., 1981; Rouiller and de Ribaupierre, 1982), and cortex (Eggermont,
002). It has been suggested that the emphasis given to transients in neural repre-
entation may reduce correlations in the stimulus representation and have a role
n figure-ground separation (Coath and Denham, 2007). In addition physiologi-
al measurements suggest that information in different parts of the tonotopically
rranged auditory system is extracted on different, frequency dependent time scales
Krumbholz et al., 2003). In the light of this evidence our model consists of three
re-processing stages.

.1.1. Cochlear model
The firststage approximates processing in the cochlea. Sounds are processed

sing a bank of 30 Gammatone filters (Slaney, 1994), with centre frequencies ranging
rom 100 to about 8000 Hz arranged evenly on an equivalent rectangular bandwidth
cale (Glasberg and Moore, 1990). The output in each frequency channel is half-wave
ectified as a simple model of inner hair cell function.

.1.2. Transient enhancement
The next stage of processing involves enhancement of the transients in the signal

erived from each cochlear filter. The model of transient responses used here is based
n the skewness of the distribution of energy in a time window (Coath and Denham,
005, 2007; Coath et al., 2005). Short-term skewness is a sensitive indicator of rising
nd falling energy and has a value near zero when the energy is approximately
nchanging. Although this representation identifies both onsets and offsets (positive
nd negative skewness), these two responses may be characteristic of separate cell
opulations. In the experiments described here only the onsets, or regions of rising
nergy, have been used.

.1.3. Spike generation
The last stage of the sub-thalamic processing involves the generation of spike

rains suitable as inputs for the conductance based synapses used in the model.
equences of spikes are generated where the inter-spike intervals are chosen from
gamma function probability density (Dayan and Abbot, 2001) which reduces the
robability of short inter-spike intervals and models refractory effects. The resulting
pike train is converted to a time dependent rate using the estimated firing rate,
hich is taken to be the analogue output of the transient sensitive processing, by a
rocess of spike ‘thinning’ (Dayan and Abbot, 2001).

The whole of the subcortical processing can be succinctly summarized as in
ig. 1.
.2. The network

.2.1. Neurons
The neurons used are adaptive exponential integrate-and-fire (aEIF) units (Brette

nd Gerstner, 2005), this approach substitutes the strict voltage threshold by a more
F
c

s first decomposed in to frequency channels using a gammatone filter bank, then
egions of rising energy within each channel are identified. Spikes trains are then
enerated which are thinned to rate code the amplitude of each channel. See Section
.1 for details.

ealistic, smooth spike initiation zone (Fourcaud-Trocm and Brunel, 2005). It also
ncludes a variable which allows modelling of subthreshold resonances or adapta-
ion (Richardson et al., 2003). Most importantly it uses a stimulation paradigm not
f current injection, but of conductance injection which moves integrate-and-fire
odels closer to a situation that cortical neurons would experience in vivo (Destexhe

t al., 2003). This modification also allows the use of conductance based synapses
s described below.

.2.2. Synapses
There are four types of synapse present in the model. The first three representing

AMPA, GABA, and NMDA synapses are modelled by an exponential rise and fall
f conductance as a function of the pre-synaptic spike time (Eq. (1)). The fourth
ynapse type, which is based on an AAMPA synapse that exhibits synaptic depression
referred to as dAAMPA here) is described in Section 2.2.3 below. The time course
f the conductance g for AAMPA, GABA, and NMDA synapses as a function of pre-
ynaptic spike time tf is given in Eq. (1).

(t) =
∑

f

WḡN [e−(t−tf )/�d e−(t−tf )/�r ] �(t − tf) (1)

In Eq. (1)�r and �d are the time constants for the rise and decay of the synaptic
onductance, ḡ is the maximum conductance, and N is a normalizing factor. W is the
ynaptic weight which is adjusted by the learning rule (see Section 2.3). The values
sed are collated in Table 1(Gerstner and Kistler, 2002).

.2.3. Depressing synapses
The dynamical properties of cortical synapses can influence the temporal sen-

itivity of cortical circuitry (Tsodyks and Markram, 1997). Synaptic responses are
ontext dependent, and may develop depression or facilitation, depending on the
ig. 2. Representation of the model of synaptic depression showing the three-
entred approach described in Eq. (2)
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Fig. 3. Each ‘column’ of the network consists of eight neurons divided in to two
sections. The sub-cortical section receives input from one tonotopic channel of the
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pre- and post-synaptic firing times. Evidence for this has been gathered in vitro, and
is beginning to emerge in vivo (Jacob et al., 2007), and is believed to be a feature of
synapses which have NMDA receptors which regulate genes required for long term
maintenance of these changes (Rao and Finkbeiner, 2007). The degree of synaptic
modification (M as a percentage, potentiation or depression) is typically a function
of the number of pre- and post-synaptic action potentials, and a function of the time
ub-thalamic processing. Each thalamic (MGB) cell is connected to a number of corti-
al cells representing layer IV, the principal receiving layer. Layer VI cells recurrently
onnect the cortex to the thalamus VIA NMDA synapses which exhibit STDP which
s the origin of the correlation based learning in the network.

[-]the transmitter released in to the cleft x, and
[-]the store of transmitter waiting to be reprocessed w.

Transitions between these states are controlled by time constants ˛ and ˇ, by the
ynaptic efficacy �, and by the function f [y(t)] which is stochastic in that it incorpo-
ates a random variation in the amount of transmitter released. I(t) has values unity
r zero indicating the presence or absence of a pre-synaptic spike at time t

z(t) = � · I(t) · f [y(t)]
dx

dt
= z(t) − ˛ · x(t)

dy

dt
= ˇ · w(t) − z(t)

dw

dt
= ˛ · x(t) − ˇ · w(t)

(2)

The synaptic parameters for Eq. (2) were adjusted so as to replicate rise and fall
imes of conductances and paired pulse ratios reported in in vivo studies of pyramidal
eurons (Atzori et al., 2001).

.2.4. Network architecture
The model auditory cortex consists of one hundred ‘columns’ eachconsisting of

ight aEIF units as illustrated in Fig. 3. The lower, sub-cortical, section represents the
unction of the inferior-colliculus (IC) with the medial geniculate body of the thala-

us (MGB). The upper section represents a two layer cortical structure consisting of
receiving layer of pyramidal (PY) cells (layers iii and iv (Winer et al., 2005) marked

imply as PY4 in Fig. 3) and a second layer (layer VI marked as PY6 in the figure)
roviding a recurrent excitatory connection to the thalamus (Guillery and Sherman,
002), and recurrent inhibitory connection to the thalamus via the thalamic retic-
lar nucleus (RE) (Guillery and Sherman, 2002). The excitatory afferents from the
halamus to the receiving layer of the cortical part of the model come from a number
f MGB cells. These are selected based on a Gaussian distribution of probabilities.
he probability distribution is arranged such that there is an 80% chance a PY4 cell
eceiving excitation from an IC cell within its own column. This falls as the inter-
olumn distance d increases and is close to zero at d = 10, see Fig. 4. Connections
t d > 10 are rejected. These connections give the opportunity for cortical neurons
o integrate information from heterotopic areas of thalamus. They also stand as sur-
ogates for the cortico-cortical connections (Thomson and Bannister, 2003) which
ave no explicit representation in this model.
Excitatory inputs to the thalamus come from two sources: first, the IC, that is
he output of the sub-thalamic processing stage of the model, and second, recur-
ent connections from layer VI. The cortico-thalamic connections are mediated via
MDA type synapses which are the loci of the STDP and hence the correlation based

earning in the network, see Section 2.3. These connections come from a number
f PY6 cells selected from columns based on a Gaussian distribution of probabili-
ig. 4. Probability distributions for connections between thalamic and cortical sub-
ections of the network.

ies. The probability distribution is arranged such that there is an 80% chance of a
halamic cell receiving excitation from a PY6 cell within its own column falling as
he inter-column distance (d) increases to ≈ 10% at d = 20 see Fig. 4. Connections at
> 20 are rejected. Inhibitory inputs to the thalamus also come from two sources:
rst, the IC, in this case via a GABA type interneuron (although there is evidence for
irect connections from GABAergic cells in IC (Winer et al., 1996; Marie et al., 1997),
nd second, from recurrent connection with the thalamic reticular nucleus (Guillery
t al., 1998; Guillery and Sherman, 2002).

.3. Synaptic plasticity

STDP is the modification of synaptic weights based on the correlation between
Fig. 5. The window function used in STDP learning.
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nterval between them, the inter-spike interval �isi . The function of �isi which yields
is called the STDP window function (Bi and Rubin, 2005), see Fig. 5.
In general, if a pre-synaptic spike precedes a post-synaptic spike then the

ynapse is potentiated; if the timing of the spikes is reversed then the synapse is
epressed. However, if the firing rate is relatively low then it is not necessary to

ook at individual spike pairs. The synaptic modification can be calculated by mul-
iplying the cross-correlation function of the pre- and post-synaptic spike trains by
he window function chosen and integrating (or summing in the discrete case) the
esult (Drew and Abbott, 2006). It is this approach that is adopted here for reasons
f computational efficiency.

One problem with correlation based learning is that the weight changes are
nstable and additional mechanisms have to be invoked to ensure that weights do
ot increase in an uncontrolled manner. Our approach in this initial work was to start
ith very low weights and keep the training short. In this way we see how the pattern

f weight changes establishes itself in the early stages of training. Another possibility
s to implement a form of homeostatic normalization, this is being investigated as
art of the next stage in the development of the model.

The window function used in this work is shown in Eq. (3) and illustrated in
ig. 5. The synaptic modification (M) decays exponentially away from the max-
mum at �isi = −2 where M = 0.5. This function is not continuous because the
ross-correlation of the pre- and post-synaptic spike trains is calculated with the
pike times in 1 ms bins.

�isi ∈ ] − ∞, −2] : M = exp

(
�isi + 2

5

)
· 0.5

�isi ∈ [−1, ∞[: M = − exp

(−�isi
10

)
· 0.5

(3)
.4. Training regime

The network was trained three times, once with each of three stimulus sets. Each
et consisted of five stimuli all belonging to the same class. The three classes were

•
•

•

ig. 7. Results for white noise training. (a) Column number (i.e. position on the tonotopic
nd lower axes indicate short, medium, and long range connections respectively. (b) Syna
n each weight bin. (c) The number of columns traversed by the NMDA cortico-thalamic c
ig. 6. Examples from each of the three classes of stimuli used in training. Each class
onsisted of five similar stimuli with each stimulus being presented five times in a
andom order.
[-]White noise: five samples of white noise in one second bursts,
[-]Dual tone: five examples of two overlapping tones each of 100 ms duration at
2.0 and 5.5 kHz preceded by varying amounts of silence with the whole stimulus
padded to approximately one second,
[-]Speech: five speech stimuli (‘shad’, ‘mad’, ‘dad’, ‘lad’, ‘tad’) preceded by varying
amounts of silence and padded as in the previous stimulus set.

axis) plotted against final synaptic weight (wij) after training. The upper, middle,
ptic weights divided in to 20 bins indicating log10 of the number of connections n
onnection d against the weight of this connection.
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Examples from each of these stimulus sets are illustrated as short term Fourier
ransform spectrograms in Fig. 6. Each stimulus in the set was presented 25 times
iving a total of 125 stimulus presentations per training cycle with the order of
timuli randomized. After each presentation the cross-correlation of the pre- and
ost-synaptic spike trains for each of the NMDA type synapses was calculated (in
ms time bins) and the value at each lag multiplied by the weighting function to

etermine the synaptic modification (see Section 2.3). The synaptic weights were
hen modified before the next presentation.

.5. STRF estimation

A popular method for characterizing the responses of cortical and sub-cortical
ells is the spectro-temporal receptive field or STRF, e.g. Kowalski et al. (1996a,b),
eCharms et al. (1998), Depireux et al. (2001), Theunissen et al. (2001), Miller et
l. (2002), Elhilali et al. (2004). Some time ago it was shown how reverse corre-
ation in response to white noise could be used to characterize STRFs (Aertsen and
ohannesma, 1981).The STRFs in this report have been derived using a MATLAB tool-
ox called STRFPak which is developed by the Theunissen and Gallant laboratories at
C Berkeley (Zhang and Gill, 2006). This software incorporates methods to remove

timulus correlations from STRF estimation (Theunissen et al., 2001; Miller et al.,
002) allowing a broader range of stimuli (including natural stimuli) to be used for
his purpose. Although there are no constraints on the stimuli that can be used, a
arge number of spikes are needed for the noise in the estimate to be reduced. Given
he dynamics of the synaptic depression (see Section 2) some types of stimuli will
voke very few spikes and necessitate the processing of unmanageably large stimu-
us files. For the results in this report we have used stimuli consisting of sequences
f tone combinations, or ‘random chords’, that are based on the idea of an auditory
heckerboard (deCharms et al., 1998). These consist of a continuous sequence of up

o six 20 ms tone bursts from a randomly selected range of frequencies presented
imultaneously.

The spike trains used in STRF estimation were obtained after training and with-
ut further adjustment of the synaptic weights. The random chord stimuli were
resented to each of the three trained networks for a total of 300 s and the time
f each spike in each of the 100 PY6 neurons recorded, layer VI being regarded as

3

l

Fig. 8. Results for dual tone trainin
s 94 (2008) 60–67

he ‘output’ layer for the purposes of this work. The STRFs illustrated in the results
ection are derived from these spike trains.

.6. Linearity

The STRF is a linear kernel. To illustrate the degree to which this linear approxi-
ation captures the behaviour of the model we calculate the correlation coefficient

etween the predicted response (obtained by convolving the STRF with the spectro-
emporal representation of the stimulus used in its estimation) and the actual
esponse of the model. To do this we estimate the instantaneous firing rate of the
Y6 cells in the model from the output spike times using a weighted sum over a
0 ms Gaussian window. The network weights used were those resulting from the
raining with speech stimuli. Of the 100 PY6 cells in the model 50 exhibited less
han 1000 spikes during the estimation period and these cells were excluded from
he analysis. The correlation coefficient does not take into account that the STRF
esponse and the experimental responses might exhibit a linear relationship but
ith one or more delays between them. A general method to address this prob-

em is the well-known linear autoregressive models using exogenous inputs (ARX) in
ignal processing theory (Ljung, 1986). We investigated this potential time-delayed
inear relationship between each STRF prediction and the corresponding measured

odel neuron response by finding the linear FIR filter (i.e. an ARX model having no
utoregressive terms) of the prediction that most closely resembles the measured
esponse. To assess the degree to which these time delayed terms might be impor-
ant we also calculate the correlation coefficient between this filtered STRF response
nd the measured response for each neuron.

. Results
.1. Synaptic weights

The final synaptic weights after training using each of the stimu-
us sets described in Section 2.4 can be seen in Figs. 7–9 . All weights

g. See Fig. 7 for explanation.
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Fig. 9. Results for speech tr

n NMDA synapses were initialized to 0.3 and the results in Figs. 7–9
how the weight distribution after training.

The first sub-figure of each set of three shows the column num-
er (the tonotopic axis) on the abscissa against the weight of the
ynaptic connection (wij) for all NMDA connections originating
t that column. The distance to the destination column is also
ndicated: short-range (0 < d ≤ 4) connections marked with red
rosses on the upper axis, medium-range connections (4 < d ≤ 8)
arked with blue dots on the centre axis and finally, long-range

onnections (8 < d) marked with black plus signs on the lower axis.
The second sub-figure shows log10 of the total number of con-

ections (n) having a particular weight, with the weight values
ivided in to 20 bins.

The third sub-figure plots the distance d in columns, traversed
y the NMDA connection on the abscissa against the final weight
fter training.

The white noise stimulus produces a pattern of high weights
n short range connections across most of the tonotopic axis. A
arge number of weights remain approximately unchanged over the
ourse of the training implying un-correlated firing in the network.

The dual tone stimulus produces high weights in the regions
f the tonotopic axis corresponding to energy in the stimulus but
lso produces a greater number of medium-range connections.

his reflects the temporal correlations between frequency channels
nherent in the stimulus.

It is clear that the final weights for the speech stimuli, with their
icher spectro-temporal content, produce a connection pattern
ith a greater number of long-range, high-strength connections

n
i
t
f
s

. See Fig. 7 for explanation.

han the simpler dual-tone and white noise stimulus classes. This
s accompanied by a greater proportion of synaptic strengths that
ave been forced to (or very near to) zero.

.2. STRFs

The net effect of a range of homotopic and heterotopic pro-
ections of varying weights from across the tonotopic axis is that
he responses of the model cortical neurons will exhibit responses
hat can be interpreted as STRFs in a way which is comparable to

easurements made in vivo. These were calculated using STRFPak
Zhang and Gill, 2006) for all pyramidal neurons in layer VI. As each
f the training regimes was initiated from precisely the same start-
ng weights and connectivity it is interesting to compare the final
esponse of the same neuron after training with each of the three
timulus classes. This can be seen in two representative cases in
igs. 10 and 11. In the first case (column 55) the final responses
re similar for all three training sets. It is clear, however, that there
s a minimum in the response at ≈4 kHz which is above the best
requency of ≈2 kHz. This implies the neuron will ‘respond pref-
rentially to narrow frequency bands or to constant-frequency edges
hat correspond to the excitatory region’ (King and Schnupp, 1998). In
he second case (column 72) in contrast, the three final states of the

etwork show (a) integration across a broad range of frequencies

n temporally imprecise maxima for the noise trained network, (b)
wo well defined temporally precise maxima in low-to-high order
or the dual-tone stimuli, and (c) a single maximum for the speech
timuli.
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Fig. 10. STRFs for PY655 showing simple geometry from each of the three stimulus
classes. (a) White noise, (b) dual tone, and (c) speech.
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ig. 11. STRFs for PY672 showing more complicated heterotopic integration which
s markedly different for each of the three stimulus classes. (a) White noise, (b) dual
one, and (c) speech.

.3. Linearity

Fig. 12 shows the values of the correlation coefficient between
he response of each of the model cells and the prediction by the
TRF for that cell—these values have been sorted and arranged in

scending order of correlation coefficient on the abscissa. The upper
olid line illustrates the values from the ARX filtered prediction and
ence represents, for each neuron, an upper bound on the value
f the correlation when linear combinations with time delays are

ig. 12. The correlation coefficients between the model response and (lower broken
ine) the STRF prediction and (upper solid line) the ARX filtered STRF prediction.
hese represent a direct measure of the linearity of each of the PY6 cells. The cells
re arranged in increasing order of correlation coefficient along the abscissa. They
xhibit a wide range of values from ≈ 0.22 to ≈ 0.42 where a significant change
ould be 0.03 (95% confidence).
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ncluded. The values for the un-filtered STRF prediction (lower bro-
en line) are very close to these values indicating that the majority
f the predictive capacity can be accounted for without taking in
o account delays. The neurons exhibit a highly significant range
f linearities, as do in vivo cortical responses, e.g. Machens et al.
2004), however it is difficult to compare these results directly as
hysiological measurements are frequently made on the basis of
embrane potentials, with action potentials blocked pharmaco-

ogically, rather than using spike rates.

. Discussion

The simple nature of the neuron and synapse models used
ere, and the implementation of the STDP learning rule, make this
pproach eminently suitable for implementation in neuromorphic
nalogue VLSI hardware (Indiveri et al., 2006). For the hardware
mplementation the learning rule would be modified to one that
s based on single pairs of pre- and post-synaptic action potentials
ocalized in time as well as space. In this way the model could form
he basis of a developmental, real time, neuromorphic sound clas-
ification system. It has previously been shown that ensembles of
TRF-like kernels derived from formative stimuli respond to stimuli
n such a way as to preserve information about what the stimulus
s, who is saying it, and in what manner it is being said (Coath and
enham, 2005; Coath et al., 2005). Useful kernels exhibited a range
f response types and were of intermediate temporal extent, these
deas are related to interesting work in the field of vision (Ullman
t al., 2002).

The work presented here goes some way towards putting these
deas on a biologically plausible footing by showing that correlation
ased learning in a model thalamo-cortical system can lead to an
nsemble of responses whose STRFs also exhibit a wide range of
imple and integrative responses that are, in some way, related to
roperties of the formative stimuli. The model cortex, with its range
f spectro-temporal preferences exhibited by the PY6 neurons, can
e seen as an ‘ensemble of feature extractors’ (Coath and Denham,
005). However, in this case the formation of the ensemble is stim-
lus driven, and by mechanisms that could be implemented in the
eural substrate.

The weights resulting from training the network with speech
esult in responses for each of the model cortical cells that exhibit
wide range of linearities. This is revealed by the fact that there are
large range of values for the correlation coefficient between the

esponse of each model neuron and the prediction on the basis of
ts STRF. This is despite the fact that the response being predicted
s precisely the one that was used to estimate the STRF. This is con-
istent with the situation revealed by physiological measurements
lthough, as mentioned in Section 3.3 direct comparisons are diffi-
ult. The origins of these non-linearities could be in the long-range,
igh-strength connections that are evident in the network trained
sing more complex stimuli (see Fig. 9(c)); work is now underway
o investigate this. These non-linearities are important in interpret-
ng results that show that while STRFs appear to predict responses
o certain classes of stimuli well, e.g. Klein et al. (2000), it is clear
hat neurons can exhibit a high degree of selectivity in response
o certain natural stimuli (Theunissen et al., 2000; Machens et al.,
004). Further work is now underway which, it is hoped, will lead
o results which will allow a fuller account of the nature and effects
f non-linearities in these model cortical responses.
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